-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpro.cpp
277 lines (230 loc) · 7.73 KB
/
pro.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/* PRL 2018 - Projekt 3 - Preorder prechod stromom
* Autor: Marian Orszagh (xorsza00)
*
*/
#include <mpi.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <limits>
#include <iomanip>
#include <cmath>
using namespace std;
#define RANK rank+1
// Ak je zadefinovana, normalny vystup je potlaceny a na vystup je vypisany
// cas behu
// #define TIME true
/* Vrchol zisti, ci ma laveho potomka.
*/
bool i_have_left_child(int node, int input_len) {
return ((node+1)*2 <= input_len);
}
/* Vrchol zisti, ci ma praveho potomka.
*/
bool i_have_right_child(int node, int input_len) {
return ((node+1)*2+1 <= input_len);
}
/* Vrchol zisti, ci ma predchodcu.
*/
bool i_have_parent(int node) {
return (node > 0);
}
pair<int, int> rev_pair(pair<int, int> p) {
return make_pair(p.second, p.first);
}
vector<pair<int, int>> tree_to_graph(int rank, int length) {
vector<pair<int, int>> output_graph;
if (i_have_left_child(rank, length)) {
output_graph.push_back(make_pair(rank, rank*2));
output_graph.push_back(make_pair(rank*2, rank));
}
if (i_have_right_child(rank, length)) {
output_graph.push_back(make_pair(rank, rank*2+1));
output_graph.push_back(make_pair(rank*2+1, rank));
}
return output_graph;
}
/* Pre hranu sa vypocita adjacency list, v ktorom sa nachadza.
*/
vector<int> calculate_adj_list(pair<int, int> edge, int length) {
vector<int> adj_list;
// Vyskyt laveho potomka
if (i_have_left_child(edge.second, length)) {
adj_list.push_back(edge.second * 4);
adj_list.push_back(edge.second * 4 + 1);
}
// Vyskyt praveho potomka
if (i_have_right_child(edge.second, length)) {
adj_list.push_back(edge.second * 4 + 2);
adj_list.push_back(edge.second * 4 + 3);
}
// Vyskyt rodica (v podstate vsetko okrem poslednej hrany etour)
if (i_have_parent(edge.second)) {
adj_list.push_back((edge.second-1) * 2 + 1);
adj_list.push_back((edge.second-1) * 2);
}
return adj_list;
}
/* Vypocet nasledujucej hrany z korespondujuceho adjacency listu.
*/
int get_succ_from_adjlist(vector<int> adj_list, int rev_pid) {
int my_succ;
for (int i=0; i < adj_list.size(); i=i+2) {
if (adj_list[i] == rev_pid) {
if(i+2 < adj_list.size()){
my_succ = adj_list[i+2];
}
else my_succ = adj_list[0];
}
}
return my_succ;
}
int main(int argc, char *argv[])
{
// Init
int proc_count;
int pid, rev_pid;
int my_succ, my_pred;
MPI_Status stat;
// Meranie casu
#ifdef TIME
double start, finish;
#endif
// Vstupny retazec
string input = argv[1];
int length = input.size();
if (length == 1) {
cout << input[0] << endl;
return 0;
}
// MPI init
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &proc_count);
MPI_Comm_rank(MPI_COMM_WORLD, &pid);
#ifdef TIME
if (!pid) start=MPI_Wtime();
#endif
pair<int, int> my_edge;
pair<int, int> rev_edge;
// Kazdy procesor spocita hranu svoju, reverznu k svojej a pid procesoru
// reverznej hrany.
if (pid%2) {
my_edge = make_pair(pid/2+1, pid/4);
rev_edge = rev_pair(my_edge);
rev_pid = pid - 1;
}
else {
my_edge = make_pair(pid/4, pid/2+1);
rev_edge = rev_pair(my_edge);
rev_pid = pid + 1;
}
// Pre hranu sa spocita adjacency list, v ktorom sa nachadza
vector<int> adj_list = calculate_adj_list(my_edge, length);
// Hrana zisti, kto je jej naslednikom
my_succ = get_succ_from_adjlist(adj_list, rev_pid);
// cout<<pid<<"->"<<my_succ<<endl;
// Vektor naslednikov - cyklicky
vector<int> succ(proc_count);
succ[pid] = my_succ;
MPI_Allgather(&succ[pid], 1, MPI_INT, &succ[0], 1, MPI_INT,
MPI_COMM_WORLD);
// Svojmu naslednikovi poslem svoje id a prijmem id svojho predchodcu
MPI_Send(&pid, 1, MPI_INT, my_succ, 0, MPI_COMM_WORLD);
MPI_Recv(&my_pred, 1, MPI_INT, MPI_ANY_SOURCE, 0, MPI_COMM_WORLD, &stat);
MPI_Barrier(MPI_COMM_WORLD);
// Suffix sum
// Svojemu succ poslem svojho predchodzu a moje id (DEBUG).
// (pred, my_id)
pair<int, int> transport_pair;
int my_weight;
// Posledna hrana musi byt spatna, nastavime jej -1, aby sa s dal lepsie
// kontrolovat koniec zoznamu
if (my_succ == 0) {
my_weight = 0;
my_succ = -1;
}
else my_weight = (my_edge.first < my_edge.second);
// Prva hrana nema predchodcu a tak nebude ocakavat ziadnu spravu, mohlo
// by dojst k zaseknutiu.
if (pid == 0) my_pred = -1;
// cout << pid+1 << "->" << my_weight<<" ";
for (int n=0; n <= ceil(log2(length)); n++) {
// cout<<pid+1<<endl;
if (my_succ != -1) {
// Poslem svojemu succ id svojeho predchodcu v pripade, ze nie som
// na konci.
transport_pair.first = my_pred;
transport_pair.second = pid;
MPI_Send(&transport_pair, 2, MPI_INT, my_succ, 0, MPI_COMM_WORLD);
// cout<<pid<<" requested from "<<my_succ<<" | " <<my_pred<<endl;
}
if (my_pred != -1) {
// V pripade, ze mam co prijimat, prijimam request.
MPI_Recv(&transport_pair, 2, MPI_INT, my_pred, 0, MPI_COMM_WORLD,
&stat);
// Zaznamenam si, ktory pc mi poslal request, aby som mu mohol
// vratit odpoved.
int pred_id = transport_pair.second;
// Zmenim id svojho predchodcu.
my_pred = transport_pair.first;
// cout<<pid+1<<" sent to "<<pred_id+1<<endl;
// Prvou polozkou bude moj succ.
transport_pair.first = my_succ;
// Druhou moja hodnota.
transport_pair.second = my_weight;
// Poslem naspat.
MPI_Send(&transport_pair, 2, MPI_INT, pred_id, 0, MPI_COMM_WORLD);
}
if (my_succ != -1) {
MPI_Recv(&transport_pair, 2, MPI_INT, my_succ, 0,
MPI_COMM_WORLD, &stat);
// cout<<pid+1 << " received from " << my_succ+1<<endl;
// cout<<pid+1 << ": " << my_succ+1<<endl;
// Zmenim si naslednika a urobim vypocet weight.
my_succ = transport_pair.first;
my_weight = my_weight + transport_pair.second;
}
// cout<<pid+1 << " got through" <<endl;
MPI_Barrier(MPI_COMM_WORLD);
// cout<<"----------------"<<endl;
}
// cout<<pid+1<<":"<<my_weight<<endl;
// Korekcia
// Dvojica, kde prvy prvok je poradie a druhy je vrchol
pair<int, int> preorder(-2,-2);
vector<pair<int, int>> preorder_whole(proc_count);
if (my_edge.first < my_edge.second) {
preorder.second = my_edge.second;
preorder.first = proc_count - my_weight + 1;
}
// 1ka je urcite spatna hrana
if (pid == 1) {
preorder.first = -1;
preorder.second = 0;
}
preorder_whole[pid] = preorder;
MPI_Allgather(&preorder_whole[pid], 2, MPI_INT, &preorder_whole[0], 2,
MPI_INT, MPI_COMM_WORLD);
// Distribucia vysledku
preorder_whole[pid] = preorder;
if (pid == 0) {
// for (int i=0; i<preorder_whole.size(); i++) {
// cout<<preorder_whole[i].first<<":"<<preorder_whole[i].second+1<<endl;
// }
#ifndef TIME
sort(preorder_whole.begin(), preorder_whole.end());
for (int i=preorder_whole.size()-length;
i<preorder_whole.size();
i++) {
cout<<input[preorder_whole[i].second];
}
cout<<endl;
#else
finish=MPI_Wtime();
cout<<std::setprecision(40)<<(finish-start)<<endl;
#endif
}
MPI_Finalize();
return 0;
}