-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
837 lines (726 loc) · 28.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
import os
import re
import subprocess
from datetime import datetime
from typing import List, Optional, Tuple
import gradio as gr
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from efficient_track_anything.build_efficienttam import (
build_efficienttam_video_predictor,
)
from moviepy.editor import ImageSequenceClip
from PIL import Image, ImageFilter
# Description
title = "<center><strong><font size='8'>Efficient Track Anything (EfficientTAM)<font></strong></center>"
description_e = """This is a demo of [Efficient Track Anything (EfficientTAM) Model](https://github.com/yformer/EfficientTAM).
"""
description_p = """# Efficient Track Anything
- Built our demo based on [SAM2-Video-Predictor](https://huggingface.co/spaces/fffiloni/SAM2-Video-Predictor). Thanks to Sylvain Filoni.
- Instruction
<ol>
<li> Download <a href="https://huggingface.co/yunyangx/efficient-track-anything/tree/main">🤗Efficient Track Anything Checkpoints</a></li>
<li> Upload one video or click one example video</li>
<li> Click 'include' point type, select the object to segment and track</li>
<li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
<li> Click the 'Segment' button, obtain the mask of the first frame </li>
<li> Click the 'coarse' level and the 'Track' button, segment and track the object every 15 frames </li>
<li> Click the corresponding frame to add points on the object for mask refining (optional) </li>
<li> Click the 'fine' level and the 'Track' button, obtain masklet and masked video </li>
<li> Click the 'Reset' button to restart </li>
</ol>
- Github [link](https://github.com/yformer/EfficientTAM)
- [`🤗Efficient Track Anything Checkpoints`](https://huggingface.co/yunyangx/efficient-track-anything/tree/main)
"""
# examples
examples = [
["examples/videos/cat.mp4"],
["examples/videos/coffee.mp4"],
["examples/videos/car.mp4"],
["examples/videos/chick.mp4"],
["examples/videos/cups.mp4"],
["examples/videos/dog.mp4"],
["examples/videos/goat.mp4"],
["examples/videos/juggle.mp4"],
["examples/videos/street.mp4"],
["examples/videos/yacht.mp4"],
]
default_example = examples[0]
def get_video_fps(video_path):
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the FPS of the video
fps = cap.get(cv2.CAP_PROP_FPS)
return fps
def clear_points(image):
# we clean all
return [
image, # first_frame_path
gr.State([]), # tracking_points
gr.State([]), # trackings_input_label
image, # points_map
# gr.State() # stored_inference_state
]
def preprocess_video_in(video_path):
if video_path is None:
return (
None,
gr.State([]),
gr.State([]),
None,
None,
None,
None,
None,
None,
gr.update(open=True),
)
# Generate a unique ID based on the current date and time
unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
# Set directory with this ID to store video frames
extracted_frames_output_dir = f"frames_{unique_id}"
# Create the output directory
os.makedirs(extracted_frames_output_dir, exist_ok=True)
### Process video frames ###
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the frames per second (FPS) of the video
fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate the number of frames to process (10 seconds of video)
max_frames = int(fps * 10)
frame_number = 0
first_frame = None
while True:
ret, frame = cap.read()
if not ret or frame_number >= max_frames:
break
# Format the frame filename as '00000.jpg'
frame_filename = os.path.join(
extracted_frames_output_dir, f"{frame_number:05d}.jpg"
)
# Save the frame as a JPEG file
cv2.imwrite(frame_filename, frame)
# Store the first frame
if frame_number == 0:
first_frame = frame_filename
frame_number += 1
# Release the video capture object
cap.release()
# scan all the JPEG frame names in this directory
scanned_frames = [
p
for p in os.listdir(extracted_frames_output_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
# print(f"SCANNED_FRAMES: {scanned_frames}")
return [
first_frame, # first_frame_path
gr.State([]), # tracking_points
gr.State([]), # trackings_input_label
first_frame, # input_first_frame_image
first_frame, # points_map
extracted_frames_output_dir, # video_frames_dir
scanned_frames, # scanned_frames
None, # stored_inference_state
None, # stored_frame_names
gr.update(open=False), # video_in_drawer
]
def get_point(
point_type,
tracking_points,
trackings_input_label,
input_first_frame_image,
evt: gr.SelectData,
):
if input_first_frame_image is None:
return gr.State([]), gr.State([]), None
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.value.append(evt.index)
print(f"TRACKING POINT: {tracking_points.value}")
if point_type == "include":
trackings_input_label.value.append(1)
elif point_type == "exclude":
trackings_input_label.value.append(0)
print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
# Open the image and get its dimensions
transparent_background = Image.open(input_first_frame_image).convert("RGBA")
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.02 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points.value):
if trackings_input_label.value[index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, "RGBA")
selected_point_map = Image.alpha_composite(
transparent_background, transparent_layer
)
return tracking_points, trackings_input_label, selected_point_map
if torch.cuda.is_available():
DEVICE = "cuda"
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
elif torch.mps.is_available():
DEVICE = "mps"
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.axis("off")
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(
pos_points[:, 0],
pos_points[:, 1],
color="green",
marker="*",
s=marker_size,
edgecolor="white",
linewidth=1.25,
)
ax.scatter(
neg_points[:, 0],
neg_points[:, 1],
color="red",
marker="*",
s=marker_size,
edgecolor="white",
linewidth=1.25,
)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2)
)
def load_model(checkpoint):
# Load model accordingly to user's choice
if checkpoint == "efficienttam_s":
efficienttam_checkpoint = "./checkpoints/efficienttam_s.pt"
model_cfg = "configs/efficienttam/efficienttam_s.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_ti":
efficienttam_checkpoint = "./checkpoints/efficienttam_ti.pt"
model_cfg = "configs/efficienttam/efficienttam_ti.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_s_512x512":
efficienttam_checkpoint = "./checkpoints/efficienttam_s_512x512.pt"
model_cfg = "configs/efficienttam/efficienttam_s_512x512.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_ti_512x512":
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_512x512.pt"
model_cfg = "configs/efficienttam/efficienttam_ti_512x512.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_s_1":
efficienttam_checkpoint = "./checkpoints/efficienttam_s_1.pt"
model_cfg = "configs/efficienttam/efficienttam_s_1.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_s_2":
efficienttam_checkpoint = "./checkpoints/efficienttam_s_2.pt"
model_cfg = "configs/efficienttam/efficienttam_s_2.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_ti_1":
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_1.pt"
model_cfg = "configs/efficienttam/efficienttam_ti_1.yaml"
return [efficienttam_checkpoint, model_cfg]
elif checkpoint == "efficienttam_ti_2":
efficienttam_checkpoint = "./checkpoints/efficienttam_ti_2.pt"
model_cfg = "configs/efficienttam/efficienttam_ti_2.yaml"
return [efficienttam_checkpoint, model_cfg]
else:
efficienttam_checkpoint = "./checkpoints/efficienttam_s_512x512.pt"
model_cfg = "configs/efficienttam/efficienttam_s_512x512.yaml"
return [efficienttam_checkpoint, model_cfg]
def get_mask_efficienttam_process(
stored_inference_state,
input_first_frame_image,
checkpoint,
tracking_points,
trackings_input_label,
video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
scanned_frames,
working_frame: str = None, # current frame being added points
available_frames_to_check: List[str] = [],
):
if len(tracking_points.value) == 0:
return (
gr.update(visible=False),
None,
gr.State(),
None,
stored_inference_state,
working_frame,
)
# get model and model config paths
print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
efficienttam_checkpoint, model_cfg = load_model(checkpoint)
print("MODEL LOADED")
# set predictor
predictor = build_efficienttam_video_predictor(
model_cfg, efficienttam_checkpoint, device=DEVICE
)
print("PREDICTOR READY")
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
# print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
video_dir = video_frames_dir
# scan all the JPEG frame names in this directory
frame_names = scanned_frames
# print(f"STORED INFERENCE STEP: {stored_inference_state}")
if stored_inference_state is None:
# Init inference_state
inference_state = predictor.init_state(video_path=video_dir)
print("NEW INFERENCE_STATE INITIATED")
else:
inference_state = stored_inference_state
# segment and track one object
# predictor.reset_state(inference_state) # if any previous tracking, reset
### HANDLING WORKING FRAME
# new_working_frame = None
# Add new point
if working_frame is None:
ann_frame_idx = (
0 # the frame index we interact with, 0 if it is the first frame
)
working_frame = "frame_0.jpg"
else:
# Use a regular expression to find the integer
match = re.search(r"frame_(\d+)", working_frame)
if match:
# Extract the integer from the match
frame_number = int(match.group(1))
ann_frame_idx = frame_number
print(f"NEW_WORKING_FRAME PATH: {working_frame}")
ann_obj_id = (
1 # give a unique id to each object we interact with (it can be any integers)
)
# Let's add a positive click at (x, y) = (210, 350) to get started
points = np.array(tracking_points.value, dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array(trackings_input_label.value, np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points,
labels=labels,
)
# Create the plot
plt.figure(figsize=(12, 8))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_points(points, labels, plt.gca())
show_mask(
(out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0]
)
# Save the plot as a JPG file
first_frame_output_filename = "output_first_frame.jpg"
plt.savefig(first_frame_output_filename, format="jpg")
plt.close()
torch.cuda.empty_cache()
# Assuming available_frames_to_check.value is a list
if working_frame not in available_frames_to_check:
available_frames_to_check.append(working_frame)
print(available_frames_to_check)
return (
gr.update(visible=True),
"output_first_frame.jpg",
frame_names,
predictor,
inference_state,
gr.update(choices=available_frames_to_check, value=working_frame, visible=True),
)
def propagate_to_all(
tracking_points,
video_in,
checkpoint,
stored_inference_state,
stored_frame_names,
video_frames_dir,
vis_frame_type,
available_frames_to_check,
working_frame,
):
if (
tracking_points is None
or video_in is None
or checkpoint is None
or stored_inference_state is None
):
return (
gr.update(value=None),
gr.update(value=None),
gr.update(value=None),
available_frames_to_check,
gr.update(visible=False),
)
#### PROPAGATION ####
efficienttam_checkpoint, model_cfg = load_model(checkpoint)
predictor = build_efficienttam_video_predictor(
model_cfg, efficienttam_checkpoint, device=DEVICE
)
inference_state = stored_inference_state
frame_names = stored_frame_names
video_dir = video_frames_dir
# Define a directory to save the JPEG images
frames_output_dir = "frames_output_images"
os.makedirs(frames_output_dir, exist_ok=True)
# Initialize a list to store file paths of saved images
jpeg_images = []
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
# for out_frame_idx, out_obj_ids, out_mask_logits in g_predictor.propagate_in_video(inference_state):
# video_segments[out_frame_idx] = {
# out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
# for i, out_obj_id in enumerate(out_obj_ids)
# }
print("starting propagate_in_video")
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
inference_state
):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
# render the segmentation results every few frames
if vis_frame_type == "coarse":
vis_frame_stride = 15
elif vis_frame_type == "fine":
vis_frame_stride = 1
plt.close("all")
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
plt.figure(figsize=(6, 4))
plt.title(f"frame {out_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
# Define the output filename and save the figure as a JPEG file
output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
plt.savefig(output_filename, format="jpg")
# Close the plot
plt.close()
# Append the file path to the list
jpeg_images.append(output_filename)
if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")
torch.cuda.empty_cache()
print(f"JPEG_IMAGES: {jpeg_images}")
if vis_frame_type == "coarse":
return (
gr.update(value=jpeg_images),
gr.update(value=None),
gr.update(
choices=available_frames_to_check, value=working_frame, visible=True
),
available_frames_to_check,
gr.update(visible=True),
)
elif vis_frame_type == "fine":
# Create a video clip from the image sequence
original_fps = get_video_fps(video_in)
fps = original_fps # Frames per second
total_frames = len(jpeg_images)
clip = ImageSequenceClip(jpeg_images, fps=fps)
# Write the result to a file
final_vid_output_path = "output_video.mp4"
# Write the result to a file
clip.write_videofile(final_vid_output_path, codec="libx264")
return (
gr.update(value=None),
gr.update(value=final_vid_output_path),
working_frame,
available_frames_to_check,
gr.update(visible=True),
)
def update_ui(vis_frame_type):
if vis_frame_type == "coarse":
return gr.update(visible=True), gr.update(visible=False)
elif vis_frame_type == "fine":
return gr.update(visible=False), gr.update(visible=True)
def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
new_working_frame = None
if working_frame == None:
new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
else:
# Use a regular expression to find the integer
match = re.search(r"frame_(\d+)", working_frame)
if match:
# Extract the integer from the match
frame_number = int(match.group(1))
ann_frame_idx = frame_number
new_working_frame = os.path.join(
video_frames_dir, scanned_frames[ann_frame_idx]
)
return gr.State([]), gr.State([]), new_working_frame, new_working_frame
def reset_propagation(first_frame_path, predictor, stored_inference_state):
predictor.reset_state(stored_inference_state)
# print(f"RESET State: {stored_inference_state} ")
return (
first_frame_path,
gr.State([]),
gr.State([]),
gr.update(value=None, visible=False),
stored_inference_state,
None,
["frame_0.jpg"],
first_frame_path,
"frame_0.jpg",
gr.update(visible=False),
)
with gr.Blocks() as demo:
first_frame_path = gr.State()
tracking_points = gr.State([])
trackings_input_label = gr.State([])
video_frames_dir = gr.State()
scanned_frames = gr.State()
loaded_predictor = gr.State()
stored_inference_state = gr.State()
stored_frame_names = gr.State()
available_frames_to_check = gr.State([])
with gr.Column():
# Title
gr.Markdown(title)
with gr.Row():
with gr.Column():
# Instructions
gr.Markdown(description_p)
with gr.Accordion("Input Video", open=True) as video_in_drawer:
video_in = gr.Video(label="Input Video", format="mp4")
with gr.Row():
point_type = gr.Radio(
label="point type",
choices=["include", "exclude"],
value="include",
scale=2,
)
clear_points_btn = gr.Button("Clear Points", scale=1)
input_first_frame_image = gr.Image(
label="input image",
interactive=False,
type="filepath",
visible=False,
)
points_map = gr.Image(
label="Frame with Point Prompt", type="filepath", interactive=False
)
with gr.Row():
checkpoint = gr.Dropdown(
label="Checkpoint",
choices=[
"efficienttam_s",
"efficienttam_ti",
"efficienttam_s_512x512",
"efficienttam_ti_512x512",
"efficienttam_s_1",
"efficienttam_s_2",
"efficienttam_ti_1",
"efficienttam_ti_2",
],
value="efficienttam_s_512x512",
)
submit_btn = gr.Button("Segment", size="lg")
with gr.Column():
gr.Markdown("# Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[
video_in,
],
)
gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
with gr.Row():
working_frame = gr.Dropdown(
label="Frame ID",
choices=[""],
value=None,
visible=False,
allow_custom_value=False,
interactive=True,
)
change_current = gr.Button("change current", visible=False)
output_result = gr.Image(label="Reference Mask")
with gr.Row():
vis_frame_type = gr.Radio(
label="Track level",
choices=["coarse", "fine"],
value="coarse",
scale=2,
)
propagate_btn = gr.Button("Track", scale=1)
reset_prpgt_brn = gr.Button("Reset", visible=False)
output_propagated = gr.Gallery(
label="Masklets", columns=4, visible=False
)
output_video = gr.Video(visible=False)
# When new video is uploaded
video_in.upload(
fn=preprocess_video_in,
inputs=[video_in],
outputs=[
first_frame_path,
tracking_points, # update Tracking Points in the gr.State([]) object
trackings_input_label, # update Tracking Labels in the gr.State([]) object
input_first_frame_image, # hidden component used as ref when clearing points
points_map, # Image component where we add new tracking points
video_frames_dir, # Array where frames from video_in are deep stored
scanned_frames, # Scanned frames by EfficientTAM
stored_inference_state, # EfficientTAM inference state
stored_frame_names, #
video_in_drawer, # Accordion to hide uploaded video player
],
queue=False,
)
video_in.change(
fn=preprocess_video_in,
inputs=[video_in],
outputs=[
first_frame_path,
tracking_points, # update Tracking Points in the gr.State([]) object
trackings_input_label, # update Tracking Labels in the gr.State([]) object
input_first_frame_image, # hidden component used as ref when clearing points
points_map, # Image component where we add new tracking points
video_frames_dir, # Array where frames from video_in are deep stored
scanned_frames, # Scanned frames by EfficientTAM
stored_inference_state, # EfficientTAM inference state
stored_frame_names, #
video_in_drawer, # Accordion to hide uploaded video player
],
queue=False,
)
# triggered when we click on image to add new points
points_map.select(
fn=get_point,
inputs=[
point_type, # "include" or "exclude"
tracking_points, # get tracking_points values
trackings_input_label, # get tracking label values
input_first_frame_image, # gr.State() first frame path
],
outputs=[
tracking_points, # updated with new points
trackings_input_label, # updated with corresponding labels
points_map, # updated image with points
],
queue=False,
)
# Clear every points clicked and added to the map
clear_points_btn.click(
fn=clear_points,
inputs=input_first_frame_image, # we get the untouched hidden image
outputs=[
first_frame_path,
tracking_points,
trackings_input_label,
points_map,
],
queue=False,
)
change_current.click(
fn=switch_working_frame,
inputs=[working_frame, scanned_frames, video_frames_dir],
outputs=[
tracking_points,
trackings_input_label,
input_first_frame_image,
points_map,
],
queue=False,
)
submit_btn.click(
fn=get_mask_efficienttam_process,
inputs=[
stored_inference_state,
input_first_frame_image,
checkpoint,
tracking_points,
trackings_input_label,
video_frames_dir,
scanned_frames,
working_frame,
available_frames_to_check,
],
outputs=[
change_current,
output_result,
stored_frame_names,
loaded_predictor,
stored_inference_state,
working_frame,
],
concurrency_limit=10,
queue=False,
)
reset_prpgt_brn.click(
fn=reset_propagation,
inputs=[first_frame_path, loaded_predictor, stored_inference_state],
outputs=[
points_map,
tracking_points,
trackings_input_label,
output_propagated,
stored_inference_state,
output_result,
available_frames_to_check,
input_first_frame_image,
working_frame,
reset_prpgt_brn,
],
queue=False,
)
propagate_btn.click(
fn=update_ui,
inputs=[vis_frame_type],
outputs=[output_propagated, output_video],
queue=False,
).then(
fn=propagate_to_all,
inputs=[
tracking_points,
video_in,
checkpoint,
stored_inference_state,
stored_frame_names,
video_frames_dir,
vis_frame_type,
available_frames_to_check,
working_frame,
],
outputs=[
output_propagated,
output_video,
working_frame,
available_frames_to_check,
reset_prpgt_brn,
],
concurrency_limit=10,
queue=False,
)
demo.queue()
demo.launch(share=True)