This repository has been archived by the owner on Nov 3, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
114 lines (92 loc) · 4.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from CapsNet import capsules
def one_hot_embedding(labels, num_classes):
shape =list(labels.shape)
shape.append(num_classes)
if labels.is_cuda:
y = torch.zeros(shape).cuda()
else:
y = torch.zeros(shape)
for index in range(list(y.shape)[0]):
y[index][labels[index]]= 1
return y
def train(args, model, device, train_loader, optimizer, epoch,use_cuda):
model.train()
correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
target = one_hot_embedding(target,num_classes=10 )
criterion =nn.MSELoss()
loss= criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader,use_cuda):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
target = one_hot_embedding(target,num_classes=10 )
test_loss += F.mse_loss(output, target)
test_loss /= len(test_loader.dataset)
print('Test Loss: {:.6f}'.format( test_loss.item()))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=10, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1337, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data/mnist', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('./data/mnist', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
A, B, C, D = 64, 8, 16, 16
model = capsules(A=A, B=B, C=C, D=D, E=10,
iters=2, cuda=use_cuda).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr,)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch,use_cuda)
test(args, model, device, test_loader,use_cuda)
torch.save(model.state_dict(), "./mnist_capsules.pth")
if __name__ == '__main__':
main()