This repository was archived by the owner on Nov 3, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
112 lines (93 loc) · 4.37 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import argparse
import os
import torch
from torchvision import datasets, transforms
from smallNORB import smallNORB
def get_settings():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch Matrix-Capsules-EM')
parser.add_argument('--batch-size', type=int, default=10, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=10, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=5, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--em-iters', type=int, default=2, metavar='N',
help='iterations of EM Routing')
parser.add_argument('--save-model-folder', type=str, default='./saved_model', metavar='SF',
help='where to store the snapshots')
parser.add_argument('--data-folder', type=str, default='./data', metavar='DF',
help='where to store the datasets')
parser.add_argument('--dataset', type=str, default='mnist', metavar='D',
help='dataset for training(mnist, smallNORB)')
return parser
def load_mnist(path, args):
num_class = 10
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(path, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(path, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True)
return num_class, train_loader, test_loader
def load_smallNORB(path, args):
num_class = 5
train_loader = torch.utils.data.DataLoader(
smallNORB(path, train=True, download=True,
transform=transforms.Compose([
transforms.Resize(48),
transforms.RandomCrop(32),
transforms.ColorJitter(
brightness=32./255, contrast=0.5),
transforms.ToTensor()
])),
batch_size=args.batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
smallNORB(path, train=False,
transform=transforms.Compose([
transforms.Resize(48),
transforms.CenterCrop(32),
transforms.ToTensor()
])),
batch_size=args.test_batch_size, shuffle=True)
return num_class, train_loader, test_loader
def load_dataset(args):
path = os.path.join(args.data_folder, args.dataset)
if args.dataset == 'mnist':
num_class, train_loader, test_loader = load_mnist(path, args)
elif args.dataset == 'smallNORB':
num_class, train_loader, test_loader = load_smallNORB(path, args)
else:
raise NameError('Undefined dataset {}'.format(args.dataset))
return num_class, train_loader, test_loader
def save_model(model, args):
path = os.path.join(args.save_model_folder, args.dataset+'.pth')
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
print('saving model to {}'.format(path))
torch.save(model.state_dict(), path)
def calculate_accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_total_trainable_parameters(model):
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return pytorch_total_params