-
Notifications
You must be signed in to change notification settings - Fork 0
/
lapack.h
256 lines (249 loc) · 10.6 KB
/
lapack.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#ifndef LAPACK_H
#define LAPACK_H
/// DSYEVR computes selected eigenvalues and, optionally, eigenvectors
/// of a real symmetric matrix A. Eigenvalues and eigenvectors can be
/// selected by specifying either a range of values or a range of
/// indices for the desired eigenvalues.
///
///
/// @param[in] jobz (input) CHARACTER*1
/// = 'N': Compute eigenvalues only;
/// = 'V': Compute eigenvalues and eigenvectors.
///
/// @param[in] range (input) CHARACTER*1
/// = 'A': all eigenvalues will be found.
/// = 'V': all eigenvalues in the half-open interval (VL,VU]
/// will be found.
/// = 'I': the IL-th through IU-th eigenvalues will be found.
///
/// @param[in] uplo (input) CHARACTER*1
/// = 'U': Upper triangle of A is stored;
/// = 'L': Lower triangle of A is stored.
///
/// @param[in] n (input) INTEGER
/// The order of the matrix A. N >= 0.
///
/// @param[in,out] a (input/output) DOUBLE PRECISION array, dimension (LDA, N)
/// On entry, the symmetric matrix A. If UPLO = 'U', the
/// leading N-by-N upper triangular part of A contains the
/// upper triangular part of the matrix A. If UPLO = 'L',
/// the leading N-by-N lower triangular part of A contains
/// the lower triangular part of the matrix A.
/// On exit, the lower triangle (if UPLO='L') or the upper
/// triangle (if UPLO='U') of A, including the diagonal, is
/// destroyed.
///
/// @param[in] lda (input) INTEGER
/// The leading dimension of the array A. LDA >= max(1,N).
///
/// @param[in] vl (input) DOUBLE PRECISION
/// @param[in] vu (input) DOUBLE PRECISION
/// If RANGE='V', the lower and upper bounds of the interval to
/// be searched for eigenvalues. VL < VU.
/// Not referenced if RANGE = 'A' or 'I'.
///
/// @param[in] il (input) INTEGER
/// @param[in] iu (input) INTEGER
/// If RANGE='I', the indices (in ascending order) of the
/// smallest and largest eigenvalues to be returned.
/// 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
/// Not referenced if RANGE = 'A' or 'V'.
///
/// @param[in] abstol (input) DOUBLE PRECISION
/// The absolute error tolerance for the eigenvalues.
/// An approximate eigenvalue is accepted as converged
/// when it is determined to lie in an interval [a,b]
/// of width less than or equal to ABSTOL + EPS * max( |a|,|b| ),
/// where EPS is the machine precision. If ABSTOL is less than
/// or equal to zero, then EPS*|T| will be used in its place,
/// where |T| is the 1-norm of the tridiagonal matrix obtained
/// by reducing A to tridiagonal form.
/// See "Computing Small Singular Values of Bidiagonal Matrices
/// with Guaranteed High Relative Accuracy," by Demmel and
/// Kahan, LAPACK Working Note #3.
/// If high relative accuracy is important, set ABSTOL to
/// DLAMCH( 'Safe minimum' ). Doing so will guarantee that
/// eigenvalues are computed to high relative accuracy when
/// possible in future releases. The current code does not
/// make any guarantees about high relative accuracy, but
/// future releases will. See J. Barlow and J. Demmel,
/// "Computing Accurate Eigensystems of Scaled Diagonally
/// Dominant Matrices", LAPACK Working Note #7, for a discussion
/// of which matrices define their eigenvalues to high relative
/// accuracy.
///
/// @param[out] m (output) INTEGER
/// The total number of eigenvalues found. 0 <= M <= N.
/// If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
///
/// @param[out] w (output) DOUBLE PRECISION array, dimension (N)
/// The first M elements contain the selected eigenvalues in
/// ascending order.
///
/// @param[out] z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
/// If JOBZ = 'V', then if INFO = 0, the first M columns of Z
/// contain the orthonormal eigenvectors of the matrix A
/// corresponding to the selected eigenvalues, with the i-th
/// column of Z holding the eigenvector associated with W(i).
/// If JOBZ = 'N', then Z is not referenced.
/// Note: the user must ensure that at least max(1,M) columns are
/// supplied in the array Z; if RANGE = 'V', the exact value of M
/// is not known in advance and an upper bound must be used.
/// Supplying N columns is always safe.
///
/// @param[in] ldz (input) INTEGER
/// The leading dimension of the array Z. LDZ >= 1, and if
/// JOBZ = 'V', LDZ >= max(1,N).
///
/// @param[out] isuppz (output) INTEGER array, dimension ( 2*max(1,M) )
/// The support of the eigenvectors in Z, i.e., the indices
/// indicating the nonzero elements in Z. The i-th eigenvector
/// is nonzero only in elements ISUPPZ( 2*i-1 ) through
/// ISUPPZ( 2*i ). Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
///
/// @param[out] work (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
/// On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
///
/// @param[in] lwork (input) INTEGER
/// The dimension of the array WORK. LWORK >= max(1,26*N).
/// For optimal efficiency, LWORK >= (NB+6)*N,
/// where NB is the max of the blocksize for DSYTRD and DORMTR
/// returned by ILAENV.
/// If LWORK = -1, then a workspace query is assumed; the routine
/// only calculates the optimal size of the WORK array, returns
/// this value as the first entry of the WORK array, and no error
/// message related to LWORK is issued by XERBLA.
///
/// @param[out] iwork (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
/// On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
///
/// @param[in] liwork (input) INTEGER
/// The dimension of the array IWORK. LIWORK >= max(1,10*N).
/// If LIWORK = -1, then a workspace query is assumed; the
/// routine only calculates the optimal size of the IWORK array,
/// returns this value as the first entry of the IWORK array, and
/// no error message related to LIWORK is issued by XERBLA.
///
/// @param[out] info
/// = 0: successful exit
/// < 0: if INFO = -i, the i-th argument had an illegal value
/// > 0: Internal error
///
extern "C" void dsyevr_(const char *jobz,
const char *range,
const char *uplo,
const int *n,
double *a,
const int *lda,
const double *vl,
const double *vu,
const int *il,
const int *iu,
const double *abstol,
int *m,
double *w,
double *z,
const int *ldz,
int *isuppz,
double *work,
const int *lwork,
int *iwork,
const int *liwork,
int *info);
/// DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
/// real symmetric matrix A. If eigenvectors are desired, it uses a
/// divide and conquer algorithm.
///
/// The divide and conquer algorithm makes very mild assumptions about
/// floating point arithmetic. It will work on machines with a guard
/// digit in add/subtract, or on those binary machines without guard
/// digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
/// Cray-2. It could conceivably fail on hexadecimal or decimal machines
/// without guard digits, but we know of none.
///
/// Because of large use of BLAS of level 3, DSYEVD needs N**2 more
/// workspace than DSYEVX.
///
/// Arguments
/// =========
///
/// @param[in] jobz (input) CHARACTER*1
/// = 'N': Compute eigenvalues only;
/// = 'V': Compute eigenvalues and eigenvectors.
///
/// @param[in] uplo (input) CHARACTER*1
/// = 'U': Upper triangle of A is stored;
/// = 'L': Lower triangle of A is stored.
///
/// @param[in] n (input) INTEGER
/// The order of the matrix A. N >= 0.
///
/// @param[in,out] a (input/output) DOUBLE PRECISION array, dimension (LDA, N)
/// On entry, the symmetric matrix A. If UPLO = 'U', the
/// leading N-by-N upper triangular part of A contains the
/// upper triangular part of the matrix A. If UPLO = 'L',
/// the leading N-by-N lower triangular part of A contains
/// the lower triangular part of the matrix A.
/// On exit, if JOBZ = 'V', then if INFO = 0, A contains the
/// orthonormal eigenvectors of the matrix A.
/// If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
/// or the upper triangle (if UPLO='U') of A, including the
/// diagonal, is destroyed.
///
/// @param[in] lda (input) INTEGER
/// The leading dimension of the array A. LDA >= max(1,N).
///
/// @param[out] w (output) DOUBLE PRECISION array, dimension (N)
/// If INFO = 0, the eigenvalues in ascending order.
///
/// @param[out] work (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
/// On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
///
/// @param[in] lwork (input) INTEGER
/// The dimension of the array WORK.
/// If N <= 1, LWORK must be at least 1.
/// If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
/// If JOBZ = 'V' and N > 1, LWORK must be at least 1 + 6*N + 2*N**2.
/// If LWORK = -1, then a workspace query is assumed; the routine
/// only calculates the optimal sizes of the WORK and IWORK
/// arrays, returns these values as the first entries of the WORK
/// and IWORK arrays, and no error message related to LWORK or
/// LIWORK is issued by XERBLA.
///
/// @param[out] iwork (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
/// On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
///
/// @param[in] liwork (input) INTEGER
/// The dimension of the array IWORK.
/// If N <= 1, LIWORK must be at least 1.
/// If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
/// If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
/// If LIWORK = -1, then a workspace query is assumed; the
/// routine only calculates the optimal sizes of the WORK and
/// IWORK arrays, returns these values as the first entries of
/// the WORK and IWORK arrays, and no error message related to
/// LWORK or LIWORK is issued by XERBLA.
///
/// @param[out] info (output) INTEGER
/// = 0: successful exit
/// < 0: if INFO = -i, the i-th argument had an illegal value
/// > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
/// to converge; i off-diagonal elements of an intermediate
/// tridiagonal form did not converge to zero;
/// if INFO = i and JOBZ = 'V', then the algorithm failed
/// to compute an eigenvalue while working on the submatrix
/// lying in rows and columns INFO/(N+1) through
/// mod(INFO,N+1).
///
extern "C" void dsyevd_(const char *jobz,
const char *uplo,
const int *n,
double *a,
const int *lda,
double *w,
double *work,
const int *lwork,
int *iwork,
const int *liwork,
int *info);
#endif