-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgui-calibration.py
97 lines (81 loc) · 3.38 KB
/
gui-calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import streamlit as st
from pathlib import Path
from neptoon_gui_utils import *
import plotly.graph_objects as go
st.title(":material/adjust: Calibration")
if not st.session_state["data_corrections_made"]:
st.warning("You need to process all neutron corrections first.")
else:
st.write(
"In order to find the $N_0$ parameter, a CRNS probe needs to be calibrated on ground truth data, e.g., soil samples or TDR time serieses.",
"You can upload your calibration dataset here. In a future version, you may input your otherwise determined average soil moisture.",
)
st.session_state["calibration_file"] = Path(
st.session_state["yaml"].sensor_config.calibration.location or ""
)
uploaded_file = st.file_uploader(
"Upload files",
type={"csv"},
key="calibration_upload",
)
if uploaded_file:
# File upload
st.session_state["calibration_upload_name"] = uploaded_file.name
temp_file_path = save_uploaded_file(uploaded_file)
atexit.register(cleanup, temp_file_path)
st.session_state["calibration_upload_file"] = temp_file_path
st.session_state["calibration_file"] = temp_file_path
if st.session_state["calibration_file"]:
if not st.session_state["calibration_file"].is_file():
st.error(
"File **{:}** does not exist.".format(
st.session_state["calibration_file"]
)
)
st.warning("No file selected yet. Please upload your data.")
st.session_state["calibration_read_ready"] = False
else:
# Already uploaded
st.success(
":material/check: Using **{:}** as calibration data.".format(
st.session_state["calibration_file"]
)
)
st.session_state["yaml"].sensor_config.calibration.location = (
st.session_state["calibration_file"]
)
st.session_state["calibration_read_ready"] = True
import pandas as pd
st.session_state["yaml"].data_hub.calibration_samples_data = (
pd.read_csv(st.session_state["calibration_file"])
)
st.dataframe(
st.session_state["yaml"].data_hub.calibration_samples_data
)
if st.session_state["calibration_read_ready"]:
##############################################
st.subheader(":material/adjust: Calibration")
##############################################
@st.cache_data(show_spinner="Calibrating")
def make_calibration():
st.session_state["yaml"]._calibrate_data()
st.session_state["calibration_finished"] = True
if st.button("Calibrate!", type="primary"):
make_calibration()
if st.session_state["calibration_finished"]:
df_calibrated = st.session_state[
"yaml"
].data_hub.calibrator.return_calibration_results_data_frame()
st.write(df_calibrated)
str_no = "Estimated: $N_0 = {:.0f}$ ".format(
st.session_state["yaml"].sensor_config.sensor_info.N0,
)
if len(df_calibrated["optimal_N0"].dropna() > 1):
str_std = "$\pm {:.0f}$".format(
df_calibrated["optimal_N0"].std(),
)
else:
str_std = ""
str_unit = " cph."
st.write(str_no + str_std + str_unit)
# st.write(st.session_state["yaml"].data_hub.crns_data_frame.columns)