diff --git a/6-differentiaforms.tex b/6-differentiaforms.tex index eb1afe0..1ed4fb1 100644 --- a/6-differentiaforms.tex +++ b/6-differentiaforms.tex @@ -453,7 +453,7 @@ \section{Exterior derivative} \varphi_1^*\left(d(\varphi_{1*}\omega)_{\varphi_1(U_1\cap U_2)}\right) = \varphi_2^*\left(d(\varphi_{2*}\omega)_{\varphi_2(U_1\cap U_2)}\right). \end{equation} - Therefore, the exterior derivative $d\omega\in\Omega^k(M)$ is uniquely defined by the local definition~\eqref{eq:localdw}. + Therefore, the exterior derivative $d\omega\in\Omega^{k+1}(M)$ is uniquely defined by the local definition~\eqref{eq:localdw}. \end{corollary} \begin{proof} Follows from Theorem~\ref{thm:differentialpushforward} applied with $F = \varphi_1\circ\varphi_2^{-1} : \varphi_2(U) \to \varphi_1(U)$, where $U=U_1\cap U_2$. diff --git a/aom.tex b/aom.tex index a19afa5..7897532 100644 --- a/aom.tex +++ b/aom.tex @@ -208,7 +208,7 @@ \setlength{\parskip}{\baselineskip} Copyright \copyright\ \the\year\ \thanklessauthor - \par Version 0.9.6 -- \today + \par Version 0.9.7 -- \today \vfill \small{\doclicenseThis}