This repository has been archived by the owner on Jan 8, 2021. It is now read-only.
forked from NCAConsortium/Qualification-Requirements
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Chapter_03-NCA_Equations.Rmd
762 lines (694 loc) · 29.4 KB
/
Chapter_03-NCA_Equations.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
---
title: "NCA Equations"
author: "William Denney"
date: "October 21, 2016"
output:
html_document:
toc: 1
---
```{r setup, include=FALSE}
library(pander)
knitr::opts_chunk$set(echo = TRUE)
source("report.helpers.R")
library(knitcitations)
pander::panderOptions("keep.line.breaks", TRUE)
cleanbib()
agah <- citep("http://www.agah.eu/fileadmin/_migrated/content_uploads/PK-glossary_PK_working_group_2004.pdf")
```
For the parameter table below, concentrations measured below the limit of concentration are assumed to be written as zero. Also, mathematical terminology differs in many references; throughout this document, $ln$ is used to indicate the natural logarithm (also known as the logarithm base $e$, $log_e$, and ${}^elog$).
# Defined Parameters
The following parameter definitions are used throughout the parameter table, and these parameters are defined parameter (not calculated).
```{r defined, echo=FALSE}
defined <- data.frame(
Symbol=c("C", "D", "t", "$\\tau$"),
Units=c("concentration", "amount", "time", "time"),
Definition=c("Concentration", "Dose", "Time", "Dosing interval"))
pander(defined)
```
# Parameter Table
```{r paramdeffun, echo=FALSE}
#' Add a parameter to the parameter list
#'
#' @param symbol is the NCA abbreviation as it would typically be used in the
#' text of a paper. It may use LaTex inline formula notation with dollar
#' signs around the value. It may also be a vector of symbols if more than
#' one have nearly identical definitions.
#' @param units A text description of the units like "concentration" or
#' "concentration*time".
#' @param definition A text definition of the parameter.
#' @param cdisc The CDISC PKPARMCD value for the term (all capital letters
#' <= 8 characters).
#' @param single Can the parameter be used with single dosing? (logical)
#' @param multiple Can the parameter be used with steady-state multiple
#' dosing? (logical)
#' @param iv Can the parameter be used with intravenous dosing? (logical)
#' @param po Can the parameter be used with oral dosing? (logical)
#' @param equation The LaTeX-formatted equation for the parameter (without
#' the dollar signs).
#' @param notes Notes on the use of the parameter. This will often define
#' the differences between variants of the parameter.
addparam <- local({
paramlist <- data.frame()
function(symbol, units, definition, cdisc,
single, multiple,
iv, po, equation, notes="",
reference="") {
if (all(equation %in% "Observed")) {
## Do nothing
} else if (!all(equation %in% "")) {
equation <-
paste0("$$", equation, "$$",
collapse="\n")
}
paramlist <<-
rbind(paramlist,
data.frame(
symbol=paste(symbol, collapse=", "),
units=units,
definition=definition,
cdisc=paste(cdisc, collapse=", "),
single=single,
multiple=multiple,
intravenous=iv,
extravascular=po,
equation=equation,
notes=paste(notes, collapse="\n"),
reference=reference,
stringsAsFactors=FALSE))
}
})
```
```{r parameterdefs, echo=FALSE}
## Common, observed parameters
addparam(symbol="$C_{max}$",
units="concentration",
definition="The maximum concentration occurring at $t_{max}$.",
cdisc=c("CMAX"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="Observed",
notes="",
reference="")
addparam(symbol="$t_{max}$",
units="time",
definition="The time of $C_{max}$.",
cdisc=c("TMAX"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="Observed",
notes="",
reference="")
addparam(symbol="$C_{min}$",
units="concentration",
definition="The minimum concentration occurring between dose time and dose time plus $\\tau$ (at $t_{min}$).",
cdisc=c("CMIN"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="Observed",
notes="Compare with $C_{trough}$.",
reference="")
addparam(symbol="$t_{min}$",
units="time",
definition="The time of $C_{min}$.",
cdisc=c("TMIN"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="Observed",
notes="",
reference="")
addparam(symbol="$C_{trough}$",
units="concentration",
definition="Concentration at end of dosing interval.",
cdisc=c("CTROUGH"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="Observed",
notes="Compare with $C_{min}$.",
reference="")
addparam(symbol="$t_{lag}$",
units="time",
definition="The time prior to the first increase in concentration.",
cdisc=c("TLAG"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="Observed",
notes="",
reference=agah)
## Clast-related parameters
addparam(symbol="$C_{last,obs}$",
units="concentration",
definition="The last observed concentration above the limit of quantification. Equivalently, the concentration corresponding to $t_{last}$.",
cdisc=c("CLST"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="Observed",
notes="",
reference=agah)
addparam(symbol="$C_{last,pred}$",
units="concentration",
definition="The concentration at $t_{last}$ predicted from the log-linear regression of the terminal part of the concentration-time curve (as estimated for half-life).",
cdisc=c(),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="C_{last,pred} = \\lambda_z \\times t_{last} + A",
notes="Parameters in the equation are fit during half-life fitting.",
reference=agah)
addparam(symbol="$t_{last}$",
units="time",
definition="The time of the last measurable (positive) concentration.",
cdisc=c("TLST"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="Observed",
notes="",
reference=agah)
# AUC-related parameters
addparam(symbol="$AUC_{a,b,linear}$",
units="concentration*time",
definition="Area under the concentration time curve from measurement at time $a$ to time $b$ using the linear trapezoidal rule.",
cdisc="",
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUC_{t_i,t_{i+1}} = \\frac{1}{2} \\left(C_i + C_{i+1}\\right) \\left(t_{i+1} - t_i\\right)",
reference=agah)
addparam(symbol="$AUC_{a,b,log-linear}$",
units="concentration*time",
definition="Area under the concentration time curve from measurement at time $a$ to time $b$ using the log-linear trapezoidal rule.",
cdisc="",
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUC_{t_i,t_{i+1}} = \\frac{\\left(C_i - C_{i+1}\\right) \\left(t_{i+1} - t_i\\right)}{ln{C_i} - ln{C_{i+1}}}",
reference=agah)
addparam(symbol=c("$AUC_{0,t}$",
"$AUC_{last}$",
"$AUC_{\\tau}$"),
units="concentration*time",
definition="Area under the concentration time curve during a defined interval using only samples above the limit of quantification",
cdisc=c("AUCINT",
"AUCLST",
"AUCTAU"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUC = \\sum_{t=a}^{t=min(t_{last}, b)} AUC_{t_i,t_{i+1}}",
notes="Often, the $AUC_{a,b,linear}$ and $AUC_{a,b,log-linear}$ are combined where the linear trapezoidal rule is used for ascending concentrations ($C_{i+1} >= C_i$) or when the next concentration is below the limit of quantification ($C_{i+1} > 0$, if applicable), and the log-linear trapezoidal rule is used for descending concentrations $C_{i+1} < C_i$.",
reference=agah)
addparam(symbol=c("$AUC_{t_{last}-\\infty,pred}$",
"$AUC_{t_{last}-\\infty,obs}$"),
units="concentration*time",
definition="Area under the concentration-time curve from $t_{last}$ to $\\infty$",
cdisc=c(),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{C_{last}}{\\lambda_z}",
notes="$C_{last}$ should be $C_{last,pred}$ or $C_{last,obs}$ depending on which version of the parameter is desired.",
reference=agah)
addparam(symbol="$AUC_{t_{last}-\\infty,all}$",
units="concentration*time",
definition="Area under the concentration-time curve from $t_{last}$ to $\\infty$ as used for $AUC_{all}$.",
cdisc=c(),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUC_{t_{last},t_{last+1},linear}",
notes="$t_{last+1}$ is the first time point below the limit of quantification.",
reference=agah)
addparam(c("$AUC_{0-\\infty,pred}$",
"$AUC_{0-\\infty,obs}$"),
units="concentration*time",
definition="The area under the curve (AUC) extrapolated to $\\infty$, calculated using the observed or predicted value of the last non-zero concentration.",
cdisc=c("AUCIFP",
"AUCIFO"),
single=TRUE,
multiple=FALSE,
iv=TRUE,
po=TRUE,
equation="AUC_{last} + AUC_{t_{last}-\\infty}",
notes="Use the 'pred' or 'obs' version of $AUC_{t_{last}-\\infty}$ for the equivalent version of $AUC_{0-\\infty}$.",
reference=agah)
addparam(symbol="$AUC_{0,all}$",
units="concentration*time",
definition="The area under the curve (AUC) from the time of dosing to the time of the last observation, regardless of whether the last concentration is measurable or not.",
cdisc=c("AUCALL"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUC_{last} + AUC_{t_{last}-\\infty,all}",
notes="If all concentrations are above the limit of quantification, then $AUC_{0,all}=AUC_{last}$.",
reference=agah)
addparam(symbol=c("$AUC_{\\%extrap,obs}$",
"$AUC_{\\%extrap,pred}$"),
units="%",
definition="The area under the curve (AUC) from the last observed non-zero concentration value to infinity as a percentage of the area under the curve extrapolated to infinity using either the observed or predicted $C_{last}$.",
cdisc=c("AUCPEO", "AUCPEP"),
single=TRUE,
multiple=FALSE,
iv=TRUE,
po=TRUE,
equation="\\frac{AUC_{t_{last},\\infty}}{AUC_{0,\\infty}} \\times 100",
notes="Use the 'pred' or 'obs' version of $AUC_{t_{last},\\infty}$ and $AUC_{0,\\infty}$ for the equivalent version of $AUC_{\\%extrap}$.",
reference=agah)
addparam(symbol="$F$",
units="fraction",
definition="Bioavailability",
cdisc=c(),
single=TRUE,
multiple=FALSE,
iv=TRUE,
po=TRUE,
equation=c("\\frac{AUC_{0,\\infty,ev}}{AUC_{0,\\infty,iv}} \\frac{D_{iv}}{D_{ev}}",
"\\frac{AUC_{0,\\infty,test}}{AUC_{0,\\infty,reference}} \\frac{D_{reference}}{D_{test}}"),
notes="Bioavailability is the ratio of two AUC values. In addition to the comparison of extravascular ($ev$) to intravascular ($iv$) for absolute bioavailability, relative bioavailability compares any two $AUC_{0,\\infty} values, a 'test' to a 'reference'$. In some cases, bioavailability may be tested at steady-state using $AUC_{0,\\tau}$ instead of $AUC_{0,\\infty}$.",
reference=agah)
# AUMC parameters
addparam(symbol="$AUMC_{a,b,linear}$",
units="concentration*time^2^",
definition="Area under the first moment of the concentration time curve from measurement at time $a$ to time $b$ using the linear trapezoidal rule.",
cdisc="",
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUMC_{t_i,t_{i+1},linear} = \\frac{1}{2} \\left(t_{i+1} - t_{i}\\right) \\left(C_{i+1} t_{i+1} + C_i t_i\\right)",
reference=agah)
addparam(symbol="$AUMC_{a,b,log-linear}$",
units="concentration*time^2^",
definition="Area under the first moment of the concentration time curve from measurement at time $a$ to time $b$ using the log-linear trapezoidal rule.",
cdisc="",
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUMC_{t_i,t_{i+1},log-linear} = \\frac{t_{i+1} - t_{i}}{ln\\left(C_i\\right) - ln\\left(C_{i+1}\\right)} \\left(C_{i+1} \\times t_{i+1} + C_i \\times t_i\\right) + \\\\ \\left(\\frac{t_{i+1} - t_{i}}{ln\\left(C_i\\right) - ln\\left(C_{i+1}\\right)}\\right)^2 \\left(C_i - C_{i+1}\\right)",
reference=agah)
addparam(symbol=c("$AUMC_{0,t}$",
"$AUMC_{last}$",
"$AUMC_{\\tau}$"),
units="concentration*time^2^",
definition="Area under the first moment of the concentration time curve during a defined interval using only samples above the limit of quantification",
cdisc=c("AUMCLST",
"AUMCTAU"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUMC_{last} = \\sum_{t=a}^{t=min(t_{last}, b)} AUMC_{t_i,t_{i+1}}",
notes="See $AUC_{last}$ notes for suggested calculation options.",
reference=agah)
addparam(symbol=c("$AUMC_{t_{last}-\\infty,obs}$",
"$AUMC_{t_{last}-\\infty,pred}$"),
units="concentration*time^2^",
definition="Area under the first moment of the concentration-time curve from $t_{last}$ to $\\infty$",
cdisc=c(),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{C_{last} t_{last}}{\\lambda_z} + \\frac{C_{last}}{\\lambda_z^2}",
notes="$C_{last}$ should be $C_{last,pred}$ or $C_{last,obs}$ depending on which version of the parameter is desired.",
reference=agah)
addparam(symbol="$AUMC_{t_{last}-\\infty,all}$",
units="concentration*time^2^",
definition="Area under the first moment of the concentration-time curve from $t_{last}$ to $\\infty$ as used for $AUC_{all}$.",
cdisc=c(),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUC_{t_{last},t_{last+1},linear}",
notes="$t_{last+1}$ is the first time point below the limit of quantification.",
reference=agah)
addparam(c("$AUMC_{0-\\infty,obs}$",
"$AUMC_{0-\\infty,pred}$"),
units="concentration*time^2^",
definition="Area under the first moment of the concentration-time curve extrapolated to $\\infty$, calculated using the observed or predicted value of the last non-zero concentration.",
cdisc=c("AUMCIFP",
"AUMCIFO"),
single=TRUE,
multiple=FALSE,
iv=TRUE,
po=TRUE,
equation="AUMC_{last} + AUMC_{t_{last}-\\infty}",
notes="Use the 'obs' or 'pred' version of $AUC_{t_{last}-\\infty}$ for the equivalent version of $AUC_{0-\\infty}$.",
reference=agah)
addparam(symbol="$AUMC_{0,all}$",
units="concentration*time^2^",
definition="Area under the first moment of the concentration-time curve from the time of dosing to the time of the last observation, regardless of whether the last concentration is measurable or not.",
cdisc=c(),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="AUMC_{last} + AUMC_{t_{last}-\\infty,all}",
notes="If all concentrations are above the limit of quantification, then $AUMC_{0,all}=AUMC_{last}$.",
reference=agah)
addparam(symbol=c("$AUMC_{\\%extrap,obs}$",
"$AUMC_{\\%extrap,pred}$"),
units="%",
definition="Area under the first moment of the concentration-time curve from the last observed non-zero concentration value to infinity as a percentage of the area under the curve extrapolated to infinity using either the observed or predicted $C_{last}$.",
cdisc=c("AUMCPEO", "AUMCPEP"),
single=TRUE,
multiple=FALSE,
iv=TRUE,
po=TRUE,
equation="\\frac{AUMC_{t_{last}-\\infty}}{AUMC_{0,\\infty}} \\times 100",
notes="Use the 'pred' or 'obs' version of $AUMC_{t_{last}-\\infty}$ for the equivalent version of $AUMC_{0-\\infty}$.",
reference=agah)
## Half-life related parameters
addparam(symbol="$t_{1/2}$",
units="time",
definition="Terminal half-life",
cdisc=c("LAMZHL"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{ln 2}{\\lambda_z}",
notes="",
reference=agah)
addparam(symbol="$\\lambda_z$",
units="1/time",
definition="The first order rate constant associated with the terminal (log-linear) portion of the curve.",
cdisc=c("LAMZ"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="ln C = A - \\lambda_z t",
notes="Fit the equation using observed concentration ($C$) and time ($t$) from the terminal slope of the concentration-time curve. Selection of points for inclusion may be either manual or regression-quality based.",
reference=agah)
addparam(symbol=c("$t_{first,\\lambda_z}$",
"$t_{last,\\lambda_z}$"),
units="time",
definition="The first and last time (lower and upper limit on time) for values to be included in the calculation of $\\lambda_z$.",
cdisc=c("LAMZLL",
"LAMZUL"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="",
notes="",
reference=agah)
addparam(symbol="$N_{\\lambda_z}$",
units="count",
definition="The number of time points used in computing $\\lambda_z$.",
cdisc=c("LAMZNPT"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="",
notes="$N_{\\lambda_z}$ should always be greater than or equal to 3.",
reference="")
addparam(symbol="$r^2$",
units="fraction",
definition="The goodness of fit statistic for the terminal elimination phase.",
cdisc=c("R2"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="1 - \\frac{\\sum_i \\left(C_i - \\hat{C_i}\\right)^2}{\\sum_i \\left(C_i - \\overline{C_i}\\right)^2}",
notes="$r^2$ is typically directly available from line-fitting functions and rarely requires direct calculation. $\\overline{C_i}$ is the mean concentration of values used; $\\hat{C_i}$ is the estimated concentation.",
reference="")
addparam(symbol="$r^2_{adj}$",
units="fraction",
definition="The goodness of fit statistic for the terminal elimination phase, adjusted for the number of time points used in the estimation of $\\lambda_z$.",
cdisc=c("R2ADJ"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="1 - \\left(1 - r^2\\right) \\frac{1}{N_{\\lambda_z}-2}",
notes="The canonical form of $r^2_{adj}$ has the fraction on the right of the equation as $\\frac{p}{n-p-1}$, but for fitting terminal regression $p=1$.",
reference=agah)
## Mean Residence Time
addparam(symbol=c("$MRT_{ev,last}$",
"$MRT_{ev,\\infty,obs}$",
"$MRT_{ev,\\infty,pred}$",
"$MRT_{iv,last}$",
"$MRT_{iv,\\infty,obs}$",
"$MRT_{iv,\\infty,pred}$"),
units="time",
definition="Mean residence time (MRT) from the time of dosing to the time of the last measurable concentration or infinity, for a substance administered by intravascular or extravascular dosing.",
cdisc=c("MRTEVLST",
"MRTEVIFO",
"MRTEVIFP",
"MRTIVLST",
"MRTIVIFO",
"MRTIVIFP"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{AUMC}{AUC}",
notes="The equation shown here includes the mean absorption time for extravascular administration aligning with the SDTM definition. The $AUMC$ and $AUC$ should be chosen to match the parameter type desired (e.g. use $AUMC_{last}$ and $AUC_{last}$ for $MRT_{last}$).",
reference=agah)
addparam(symbol=c("$MAT_{last}$",
"$MAT_{\\infty,obs}$",
"$MAT_{\\infty,pred}$"),
units="time",
definition="Mean absorption time of a substance administered by extravascular dosing.",
cdisc=c("MAT"),
single=TRUE,
multiple=TRUE,
iv=FALSE,
po=TRUE,
equation=c("MRT_{ev} - MRT{iv}",
"t_{lag} + \\frac{1}{K_a}"),
notes="$K_a$ is the absorption rate from multi-exponential compartmental analysis curve fitting (and is not typically applicable for noncompartmental analysis).",
reference=agah)
## Peak to trough and similar
addparam(symbol="$PTR$",
units="ratio",
definition="The maximum concentration during a dosing interval divided by the concentration at the end of the dosing interval.",
cdisc=c("PTROUGHR"),
single=FALSE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{C_{max}}{C_{trough}}",
notes="",
reference=agah)
addparam(symbol="$TPR$",
units="ratio",
definition="The concentration at the start of a dosing interval divided by the maximum concentration during the dosing interval.",
cdisc=c("TROUGHPR"),
single=FALSE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{C_{trough}}{C_{max}}",
notes="",
reference="")
addparam(symbol="$PTF$",
units="%",
definition="The difference between Cmin and Cmax standardized to Cavg, between dose time and $\\tau$.",
cdisc=c("FLUCP"),
single=FALSE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="100 \\times \\frac{C_{max} - C_{min}}{C_{avg}}",
notes="",
reference=agah)
addparam(symbol=c("$C_{avg}$", "$C_{av}$"),
units="concentration",
definition="Average concentration",
cdisc=c("CAVG"),
single=FALSE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{AUC_{0,\\tau}}{\\tau}",
notes="",
reference=agah)
## Accumulation ratio
addparam(symbol="$R_{A,AUC}$",
units="fraction",
definition="The area under the curve at steady state divided by the area under the curve over the initial dosing interval.",
cdisc=c("ARAUC"),
single=FALSE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="R_{A,AUC} = \\frac{AUC_{\\tau,ss}}{AUC_{\\tau,sd}}",
notes="$ss$ indicates that value is at steady-state while $sd$ indicated that value is from the first (single) dose.",
reference=agah)
addparam(symbol="$R_{A,C_{max}}$",
units="fraction",
definition="The maximum concentration at steady state divided by the maximum concentration during the initial dosing interval.",
cdisc=c("ARCMAX"),
single=FALSE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="R_{A,C_{max}} = \\frac{C_{max,ss}}{C_{max,sd}}",
notes="$ss$ indicates that value is at steady-state while $sd$ indicated that value is from the first (single) dose.",
reference=agah)
addparam(symbol="$R_{A,C_{min}}$",
units="fraction",
definition="The minimum concentration at steady state divided by the minimum concentration during the initial dosing interval.",
cdisc=c("ARCMIN"),
single=FALSE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="R_{A,C_{min}} = \\frac{C_{min,ss}}{C_{min,sd}}",
notes="$ss$ indicates that value is at steady-state while $sd$ indicated that value is from the first (single) dose.",
reference=agah)
addparam(symbol="$R_{A,C_{trough}}$",
units="fraction",
definition="The trough concentration at steady state divided by the trough concentration during the initial dosing interval.",
cdisc=c("ARCTROUG"),
single=FALSE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="R_{A,C_{trough}} = \\frac{C_{trough,ss}}{C_{trough,sd}}",
notes="$ss$ indicates that value is at steady-state while $sd$ indicated that value is from the first (single) dose.",
reference=agah)
## Clearance
addparam(symbol=c("$CL_{ev,obs}$",
"$CL_{ev,pred}$",
"$CL_{ev,\\tau}$",
"$CL_{iv,obs}$",
"$CL_{iv,pred}$",
"$CL_{iv,\\tau}$"),
units="volume/time",
definition="The total body clearance for extravascular or intravascular administration (divided by the fraction of dose absorbed for extravascular), calculated using the equivalent $AUC$.",
cdisc=c("CLFO",
"CLFP",
"CLFTAU",
"CLO",
"CLP",
"CLTAU"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{F \\times D}{AUC}",
notes="For each of the symbols, select the equivalent $AUC$. Such as, $CL_{ev,pred}$ uses $AUC = AUC_{0,\\infty,pred}$",
reference=agah)
## Volumes
addparam(symbol=c("$V_{ss,obs}$",
"$V_{ss,pred}$"),
units="volume",
definition="The volume of distribution at steady state based on the equivalent for a substance administered by intravascular dosing.",
cdisc=c("VSSO", "VSSP"),
single=TRUE,
multiple=FALSE,
iv=TRUE,
po=FALSE,
equation=c("CL \\times MRT",
"\\frac{F \\times D \\times AUMC}{{AUC}^2}"),
notes="SDTM parameters are specific to intravascular dosing. For each of the symbols, select the equivalent $AUMC$ and $AUC$. When extravascular dosing is used, it is referred to as the observed or apparent volume of distribution at steady-state. CL and MRT may be given either for single dosing with $AUC_{0,\\infty}$ or steady-state with $AUC_{0,\\tau}$.",
reference=agah)
addparam(symbol=c("$V_{z,ev,obs}$",
"$V_{z,ev,pred}$",
"$V_{z,ev,\\tau}$",
"$V_{z,iv,obs}$",
"$V_{z,iv,pred}$",
"$V_{z,iv,\\tau}$"),
units="volume",
definition="The volume of distribution associated with the terminal slope following extravascular or intravascular administration (divided by the fraction of dose absorbed for extravascular), calculated using equivalent $AUC$.",
cdisc=c("VZFO",
"VZFP",
"VZFTAU",
"VZO",
"VZP",
"VZTAU"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=TRUE,
equation="\\frac{F \\times D}{AUC \\times \\lambda_z}",
notes="",
reference=agah)
## IV dosing parameters
addparam(symbol="$C_0$",
units="concentration",
definition="Initial concentration",
cdisc=c("C0"),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=FALSE,
equation="",
notes="IV bolus only. $C_0$ is back-extrapolated from the first two data points after the infusion. See data cleaning rules SDC-4 and MDC-4 for more details on the calculation and cleaning associated with $C_0$.",
reference="")
addparam(symbol="$V_0$",
units="volume",
definition="The initial volume of distribution for a substance administered by bolus intravascular dosing.",
cdisc=c("V0"),
single=TRUE,
multiple=FALSE,
iv=TRUE,
po=FALSE,
equation="\\frac{D}{C_0}",
notes="",
reference=agah)
addparam(symbol=c("$AUC_{\\%backextrap,obs}$",
"$AUC_{\\%backextrap,pred}$"),
units="concentration*time",
definition="",
cdisc=c(),
single=TRUE,
multiple=TRUE,
iv=TRUE,
po=FALSE,
equation="\\frac{AUC_{0,first}}{AUC_{0,\\infty}}",
notes="IV bolus only. $first$ is the first time point after 0, and both $AUC$ values should be calculated with $C_0$ included at time 0.",
reference="")
## Convert the notes to references for later use
paramtable <- environment(addparam)$paramlist
mask.note <- !(paramtable$notes %in% c(NA, ""))
notetable <- paramtable[mask.note,
c("symbol", "notes")]
idx.note <- 1:sum(mask.note)
paramtable$notes[mask.note] <-
sprintf("[%d][%s]", idx.note, paramtable$symbol[mask.note])
```
```{r maketable, echo=FALSE}
pander(paramtable, split.tables=Inf)
```
# Notes
```{r notelist, results="asis", echo=FALSE}
for (i in seq_len(nrow(notetable))) {
## The link to the section header is automatic
cat(sprintf("## %s\n", notetable$symbol[i]))
cat(sprintf("%s\n\n", notetable$note[i]))
}
```
# References
```{r bibliography, echo=FALSE, results="asis"}
knitcitations::bibliography()
```