Skip to content

Commit d184aa6

Browse files
committed
minor
1 parent dd12288 commit d184aa6

File tree

6 files changed

+11
-15
lines changed

6 files changed

+11
-15
lines changed

_data/sidebars/examples_sidebar.yml

-5
Original file line numberDiff line numberDiff line change
@@ -38,9 +38,4 @@ entries:
3838
- title: "Plasticity"
3939
url: /PlasticityExamples.html
4040
output: web
41-
folderitems:
42-
43-
- title: "Nanoidentation"
44-
url: /SlipSystemAlumina.html
45-
output: web
4641

images/IceSphericity_01.png

194 KB
Loading

images/IceSphericity_02.png

47.2 KB
Loading

matlab/examples.xml

+1-2
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,6 @@
77
</tocitem>
88
<tocitem target="NeutronData.html">Neutron Data<tocitem target="TOF2PoleFigure.html">Quartz TOF Data</tocitem>
99
</tocitem>
10-
<tocitem target="PlasticityExamples.html">Plasticity<tocitem target="SlipSystemAlumina.html">Nanoidentation</tocitem>
11-
</tocitem>
10+
<tocitem target="PlasticityExamples.html">Plasticity</tocitem>
1211
</tocitem>
1312
</toc>

pages/examples_matlab/IceSphericity.html

+5-4
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
22
title: Grain Boundary Statistics in Deformed Ice
3-
last_updated: 20-Mar-2021
3+
last_updated: 01-Mar-2024
44
sidebar: examples_sidebar
55
permalink: IceSphericity.html
66
folder: examples
@@ -11,10 +11,10 @@
1111
<!--
1212
This HTML was auto-generated from MATLAB code.
1313
To make changes, update the MATLAB code and republish this document.
14-
--><title>Grain Boundary Statistics in Deformed Ice</title><meta name="generator" content="MATLAB 9.10"><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"><meta name="DC.date" content="2021-03-20"><meta name="DC.source" content="script_IceSphericity.m"></head><body><font size="2"><a href="https://github.com/mtex-toolbox/examples/blob/master/GrainExamples/IceSphericity.m">
14+
--><title>Grain Boundary Statistics in Deformed Ice</title><meta name="generator" content="MATLAB 9.14"><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"><meta name="DC.date" content="2024-03-01"><meta name="DC.source" content="script_IceSphericity.m"></head><body><font size="2"><a href="https://github.com/mtex-toolbox/examples/blob/master/GrainExamples/IceSphericity.m">
1515
edit page</a>
1616
author: Sheng Fan, Department of Geology, University of Otago, Dunedin, New Zealand
17-
</font><div><!--introduction--><!--/introduction--><h2 id="1">The sphericity as measure for grain boundary irregularity</h2><p>Deformed polycrystalline materials such as ice often contain large grains interlocking with smaller grains, with many irregular grain boundaries. Boundary irregularity is hard to judge by visual inspection and it is better to use quantitative measures of boundary irregularity to infer processes across different deformation conditions. Here, we quantify the irregularity of each grain&yuml;s boundary by introducing a sphericity parameter \(\Psi\) which is calculated in 2-D from grain area <code class="language-plaintext highlighter-rouge">A</code>, grain boundary perimeter <code class="language-plaintext highlighter-rouge">P</code>, and area equivalent grain radius <code class="language-plaintext highlighter-rouge">R</code> by the formula</p><p>\[\Psi = \frac{A}{P \cdot R}\]</p><p>The grain sphericity \(\Psi\) is a useful indicator for grain boundary irregularity because it measures how closely a grain&yuml;s boundary resembles the circumference of a perfect circle. It decreases from \(\Psi = 0.5\), where the grain has a perfect circular shape, to \(\Psi = 0\) where the grain boundary is infinitely irregular. The statistics of grain boundary sphericity can be used to segregate recrystallised grains from remnant original grains (please refer to the paper for more details).</p><h2 id="3">Data</h2><p>The EBSD data set used in this demonstration (PIL185.ctf) is available from <a href="https://doi.org/10.6084/m9.figshare.13456550">https://doi.org/10.6084/m9.figshare.13456550</a>. The EBSD data were collected with a step size of 5 &micro;m and representeds an ice sample deformed at -20&deg;C to 12 percent axial strain. Let's import the data and reconstruct some grains.</p>
17+
</font><div><!--introduction--><!--/introduction--><h2 id="1">The sphericity as measure for grain boundary irregularity</h2><p>Deformed polycrystalline materials such as ice often contain large grains interlocking with smaller grains, with many irregular grain boundaries. Boundary irregularity is hard to judge by visual inspection and it is better to use quantitative measures of boundary irregularity to infer processes across different deformation conditions. Here, we quantify the irregularity of each grain&#8217;s boundary by introducing a sphericity parameter \(\Psi\) which is calculated in 2-D from grain area <code class="language-plaintext highlighter-rouge">A</code>, grain boundary perimeter <code class="language-plaintext highlighter-rouge">P</code>, and area equivalent grain radius <code class="language-plaintext highlighter-rouge">R</code> by the formula</p><p>\[\Psi = \frac{A}{P \cdot R}\]</p><p>The grain sphericity \(\Psi\) is a useful indicator for grain boundary irregularity because it measures how closely a grain&#8217;s boundary resembles the circumference of a perfect circle. It decreases from \(\Psi = 0.5\), where the grain has a perfect circular shape, to \(\Psi = 0\) where the grain boundary is infinitely irregular. The statistics of grain boundary sphericity can be used to segregate recrystallised grains from remnant original grains (please refer to the paper for more details).</p><h2 id="3">Data</h2><p>The EBSD data set used in this demonstration (PIL185.ctf) is available from <a href="https://doi.org/10.6084/m9.figshare.13456550">https://doi.org/10.6084/m9.figshare.13456550</a>. The EBSD data were collected with a step size of 5 &micro;m and representeds an ice sample deformed at -20&deg;C to 12 percent axial strain. Let's import the data and reconstruct some grains.</p>
1818
{% highlight matlab %}
1919
% plotting convention
2020
plotx2east
@@ -65,8 +65,9 @@
6565
{% endhighlight %}
6666
<center>
6767
{% include inline_image.html file="IceSphericity_02.png" %}
68-
</center><h2 id="5">Influence of EBSD step size on sphericity parameter</h2><p>Next we investigate how step size influences grain boundary irregularity measurements. To do this, we can artificially increase the step size of the EBSD data to from 10 up to 100 &yuml;m. Then, we choose one representative grain (one with a large number of pixels) and see how the sphericity parameter changes as the EBSD step size increases.</p>
68+
</center><h2 id="5">Influence of EBSD step size on sphericity parameter</h2><p>Next we investigate how step size influences grain boundary irregularity measurements. To do this, we can artificially increase the step size of the EBSD data to from 10 up to 100 &#956;m. Then, we choose one representative grain (one with a large number of pixels) and see how the sphericity parameter changes as the EBSD step size increases.</p>
6969
{% highlight matlab %}
70+
newMtexFigure('layout',[4,5])
7071
for i = 1:20
7172

7273
% now, we increase the step size of EBSD data artifically

pages/examples_matlab/SlipSystemAlumina.html

+5-4
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
22
title: Slip System Analysis in \(\alpha\)-Alumina
3-
last_updated: 05-Oct-2022
3+
last_updated: 01-Mar-2024
44
sidebar: examples_sidebar
55
permalink: SlipSystemAlumina.html
66
folder: examples
@@ -11,7 +11,7 @@
1111
<!--
1212
This HTML was auto-generated from MATLAB code.
1313
To make changes, update the MATLAB code and republish this document.
14-
--><title>Slip System Analysis in \(\alpha\)-Alumina</title><meta name="generator" content="MATLAB 9.13"><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"><meta name="DC.date" content="2022-10-05"><meta name="DC.source" content="script_SlipSystemAlumina.m"></head><body><font size="2"><a href="https://github.com/mtex-toolbox/examples/blob/master/PlasticityExamples/SlipSystemAlumina.m">
14+
--><title>Slip System Analysis in \(\alpha\)-Alumina</title><meta name="generator" content="MATLAB 9.14"><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"><meta name="DC.date" content="2024-03-01"><meta name="DC.source" content="script_SlipSystemAlumina.m"></head><body><font size="2"><a href="https://github.com/mtex-toolbox/examples/blob/master/PlasticityExamples/SlipSystemAlumina.m">
1515
edit page</a>
1616
author: Ruben Wagner, Robert Lehnert, TU Bergakademie Freiberg, Institute
1717
</font><div><!--introduction--><p>of Materials Engineering, Germany</p><!--/introduction--><h2 id="1">Data Import</h2><p>The following EBSD maps has been measured by Ruben Wagner TUBAF, Institute of Materials Engineering, 2022 within the project SFB 920. It shows an alumina inclusions in 42CrMo4 steel after nanoindentation.</p>
@@ -24,7 +24,8 @@
2424
setMTEXpref('zAxisDirection','intoPlane');
2525

2626
% import data
27-
ebsd = EBSD.load('K1_C_16_EBSD_original_bc.txt',...
27+
path = [mtexExamplePath filesep 'PlasticityExamples' filesep ];
28+
ebsd = EBSD.load([path 'K1_C_16_EBSD_original_bc.txt'],...
2829
{'notIndexed',cs,'notIndexed'},'interface','csv','silent');
2930

3031
% rotate the data in the right reference frame
@@ -185,6 +186,6 @@ <h2 id="2">Initial grain reconstruction and visualization</h2>
185186
{% endhighlight %}
186187

187188
{% highlight plaintext %}
188-
...
189+
....
189190
{% endhighlight %}
190191
<h2 id="11">References</h2><div><ul><li>Ruben Wagner, Robert Lehnert, Enrico Storti, Lisa Ditscherlein, Christina Schr&ouml;der, Steffen Dudczig, Urs A. Peuker, Olena Volkova, Christos G. Aneziris, Horst Biermann, Anja Weidner, <a href="https://www.sciencedirect.com/science/article/abs/pii/S1044580322005393"><i>Nanoindentation of alumina and multiphase inclusions in 42CrMo4 steel</i></a>, 2022.</li></ul></div></div></body></html>

0 commit comments

Comments
 (0)