-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjson2cactus.py
194 lines (156 loc) · 5.34 KB
/
json2cactus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python3
import sys
import os
import tempfile
import json
import argparse
from collections import OrderedDict
# constants
LABEL_FONTSIZE = 10
TITLE_FONTSIZE = 14
SUBTITLE_FONTSIZE = 10
DESCRIPTION = '''
Make a cactus plot from given datasets and print it in PNG format on stdout.
notes:
no check is made to see if the datasets have the same problems
the datasets are not required to be of the same size
dataset format:
[
{
"problem": "/path/to/problem",
"result": "sat"|"unsat"|"unknown"|"timeout"|"parsing error",
"solver": "solver name",
"elapsed": 1.0 // time it took, as a float
},
...
]
'''
# helpers
def plottable(row):
return (
row['result'] == 'sat' or
row['result'] == 'unsat'
)
def get_solver_name(dataset):
return dataset[0]['solver']
def data2png(raw_data, title):
# configure plot library to use SVG
import numpy as np
import matplotlib
matplotlib.use('svg')
import matplotlib.pyplot as pyplot
import matplotlib.ticker
# set axis labels and graph title
pyplot.title(title + '\n', fontsize=TITLE_FONTSIZE)
pyplot.xlabel('number of solved instances', fontsize=SUBTITLE_FONTSIZE)
pyplot.ylabel('time (s)', fontsize=LABEL_FONTSIZE, labelpad=12)
# sort the data sets by solver name
raw_data = sorted(raw_data, key=lambda x: get_solver_name(x))
# groom the data:
# - remove the incomplete points
# - sort the remaining points
groomed_data = []
for points in raw_data:
kept_points = filter(plottable, points)
sorted_points = sorted(kept_points, key=lambda x: x['elapsed'])
groomed_data.append(sorted_points)
# determine axis limits
min_x = 0
max_x = max(len(points) for points in groomed_data)
min_y = 0
fixempty = lambda x : x if len(x) > 0 else [{'elapsed': 0.0}]
max_y = max(max(point['elapsed'] for point in fixempty(points)) for points in groomed_data)
# set axis limits
pyplot.axis([min_x, max_x, min_y, max_y])
# use colours
colourmap = pyplot.cm.get_cmap(name="plasma")
colours = [colourmap(i) for i in np.linspace(0, 0.9, len(groomed_data))]
# add the data points
for points in groomed_data:
x = range(len(points))
y = [point['elapsed'] for point in points]
pyplot.plot(x, y, color=colours[0], linestyle='solid', marker='.', label=get_solver_name(points))
colours = colours[1:] # pop last used colour
# put the legend somewhere sensible
ax = pyplot.gca()
box = ax.get_position()
# ax.set_yscale("log", nonposy='clip')
ax.set_ylim(ymin=0.001, ymax=max_y*1.1)
# ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
lgd = pyplot.legend(loc='center left', bbox_to_anchor=(0, -0.2));
# make a temporary file to store the graph
# FIXME:
# this is here because I don't know how to make pyplot
# print the graph to something other than a file
# NOTE:
# doing an instant close() of the file because pyplot will open it
# on its own, and will close it on its own, after which we will
# manually open it on our own
fd, path = tempfile.mkstemp(suffix='.png')
os.close(fd)
# save the graph
pyplot.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight')
pyplot.gcf().clear()
# read the graph back
with open(path, 'rb') as graph_file:
png = graph_file.read()
os.remove(path)
return png
def main():
# create arg parser
parser = argparse.ArgumentParser(
description = DESCRIPTION,
formatter_class = argparse.RawTextHelpFormatter
)
parser.add_argument(
'name',
type = str,
help = 'name of the experiment (used in the title)'
)
parser.add_argument(
'timeout',
type = float,
help = 'timeout with which the results were gathered (used in the title)'
)
parser.add_argument(
'datasets',
metavar = 'dataset',
type = str,
nargs = '+',
help = 'JSON file with benchmark results in the described format'
)
# parse args
args = parser.parse_args()
# load data
data = {}
for dataset_path in args.datasets:
# read file
with open(dataset_path, 'r') as file:
points = json.load(file)
# add points
for point in points:
solver = point['solver']
# create dataset for the solver
if solver not in data:
data[solver] = []
# add the point to the dataset if it's plottable
if plottable(point):
data[solver].append(point)
# check data size
if len(data) < 1:
print('ERROR: no data', file=sys.stderr)
exit(1)
# drop empty data sets
empty_set_names = []
for solver, points in data.items():
if len(points) < 1:
print('WARNING: no plottable points for solver {}'.format(solver), file=sys.stderr)
empty_set_names.append(solver)
for name in empty_set_names:
data.pop(name)
# get largest data set size
size = max(map(len, data.values()))
# make title
title = '{}: {} problems, {}-s timeout'.format(args.name, size, args.timeout)
# print PNG image
sys.stdout.buffer.write(data2png(data.values(), title))