forked from Wei-1/Scala-Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQDA.scala
32 lines (25 loc) · 937 Bytes
/
QDA.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// Wei Chen - Quadratic Discriminant Analysis
// 2017-09-01
package com.scalaml.algorithm
import com.scalaml.general.MatrixFunc._
class QDA(d1: Array[Array[Double]], d2: Array[Array[Double]]) {
val n1 = d1.size
val n2 = d2.size
val m1 = matrixaccumulate(d1).map(_ / n1)
val m2 = matrixaccumulate(d2).map(_ / n2)
val c1 = covariance(d1)
val c2 = covariance(d2)
val ic1 = inverse(c1)
val ic2 = inverse(c2)
val ln1 = Math.log(determinant(c1))
val ln2 = Math.log(determinant(c2))
def predict(data: Array[Array[Double]]): Array[Int] = {
val dm1 = data.map(d => arrayminus(d, m1))
val dm2 = data.map(d => arrayminus(d, m2))
val arr1 = matrixmultiply(dm1, matrixdot(dm1, ic1)).map(_.sum)
val arr2 = matrixmultiply(dm2, matrixdot(dm2, ic2)).map(_.sum)
arr1.zip(arr2).map { case (s1, s2) =>
if (s1 + ln1 > s2 + ln2) 2 else 1
}
}
}