forked from Wei-1/Scala-Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDBN.scala
41 lines (35 loc) · 1.32 KB
/
DBN.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// Wei Chen - DBN - Deep Belief Network
// 2016-11-23
package com.scalaml.algorithm
class DBN(val layer_rbms: Array[Int], val layer_nns: Array[Int], val input_column: Int, val output_column: Int) {
val rbm_number = layer_rbms.size
val nn_number = layer_nns.size
val rbm_layers: Array[RBM] = new Array[RBM](layer_rbms.size)
val nn = new NeuralNetwork()
nn.config(layer_rbms.last +: layer_nns :+ output_column)
def clear() {
rbm_layers(0) = new RBM(input_column, layer_rbms(0))
for (i <- 1 until rbm_number) {
rbm_layers(i) = new RBM(layer_rbms(i-1), layer_rbms(i))
}
nn.clear()
}
clear()
def train(x: Array[Array[Double]], y: Array[Array[Double]], lr: Double, k: Int, limit: Int) {
var layer_input = x
for (i <- 0 until rbm_number) {
for (j <- 0 until limit) {
rbm_layers(i).train(layer_input, lr, k, limit)
}
layer_input = rbm_layers(i).forward(layer_input)
}
nn.train(layer_input, y, iter = limit, _learningRate = lr)
}
def predict(x: Array[Array[Double]]): Array[Array[Double]] = {
var layer_input = x
for (i <- 0 until rbm_number) {
layer_input = rbm_layers(i).forward(layer_input)
}
return nn.predict(layer_input)
}
}