forked from Wei-1/Scala-Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUpperConfidenceBound.scala
39 lines (34 loc) · 1.23 KB
/
UpperConfidenceBound.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// Wei Chen - Upper Confidence Bound
// 2020-03-08
package com.scalaml.algorithm
class UpperConfidenceBound {
var currentStats: Array[(Double, Int)] = null
def select(c: Double): Int = {
val n = currentStats.count(_._2 > 0)
val currentScores = currentStats.map { case (m, kn) =>
m + c * math.sqrt(math.log(n + 1) / (kn + 1e-12))
}
currentScores.indexOf(currentScores.max)
}
def add(i: Int, value: Double) {
val (currentValue, currentCount) = currentStats(i)
val newValue = (currentValue * currentCount + value) / (currentCount + 1)
currentStats(i) = (newValue, currentCount + 1)
}
def search(
evaluation: Array[Double] => Double,
choices: Array[Array[Double]],
scores: Array[(Double, Int)] = null,
c: Double = 1
): Array[Double] = {
val size = choices.size
if (scores != null)
currentStats = scores
if (currentStats == null)
currentStats = Array.fill[(Double, Int)](size)((0, 0))
val currentSelect = select(c)
val value = evaluation(choices(currentSelect))
add(currentSelect, value)
choices(currentStats.indexOf(currentStats.maxBy(_._1)))
}
}