forked from Wei-1/Scala-Machine-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeightedBoostTest.scala
73 lines (64 loc) · 2.38 KB
/
WeightedBoostTest.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// Wei Chen - Weighted Boost Test
// 2018-09-26
import com.scalaml.TestData._
import com.scalaml.general.MatrixFunc._
import com.scalaml.algorithm._
import org.scalatest.funsuite.AnyFunSuite
class WeightedBoostSuite extends AnyFunSuite {
val boost = new WeightedBoost()
test("WeightedBoost Test : Clear") {
assert(boost.clear())
}
test("WeightedBoost Test : Linear Data") {
assert(boost.clear())
assert(boost.config(Map[String, Any]()))
assert(boost.train(LABELED_LINEAR_DATA))
val result1 = boost.predict(UNLABELED_LINEAR_DATA)
assert(arrayequal(result1, LABEL_LINEAR_DATA))
val classifiers: Any = Array(
new BayesianDecision,
new DecisionTree,
new GaussianProcess,
new KNN,
new LinearClassification,
new LinearSVM,
new Perceptron,
new RandomForest
)
assert(boost.clear())
assert(boost.config(Map("classifiers" -> classifiers)))
assert(boost.train(LABELED_LINEAR_DATA))
val result2 = boost.predict(UNLABELED_LINEAR_DATA)
assert(arrayequal(result2, LABEL_LINEAR_DATA))
}
test("WeightedBoost Test : Nonlinear Data") {
assert(boost.clear())
assert(boost.config(Map[String, Any]()))
assert(boost.train(LABELED_NONLINEAR_DATA))
val result1 = boost.predict(UNLABELED_NONLINEAR_DATA)
assert(arrayequal(result1, LABEL_NONLINEAR_DATA))
val svm = new LinearSVM()
svm.config(Map("cost" -> Map(1 -> 1.0, 2 -> 1.0)): Map[String, Any])
val classifiers: Any = Array(
new BayesianDecision,
new DecisionTree,
new GaussianProcess,
new KNN,
new LinearClassification,
svm,
new Perceptron,
new RandomForest
)
assert(boost.clear())
assert(boost.config(Map("classifiers" -> classifiers)))
assert(boost.train(LABELED_NONLINEAR_DATA))
val result2 = boost.predict(UNLABELED_NONLINEAR_DATA)
assert(arrayequal(result2, LABEL_NONLINEAR_DATA))
}
test("WeightedBoost Test : Invalid Config & Data") {
assert(boost.clear())
assert(!boost.config(Map("classifiers" -> "test")))
assert(boost.config(Map[String, Any]()))
assert(!boost.train(Array((1, Array(1, 2)), (1, Array()))))
}
}