-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
372 lines (268 loc) · 11.6 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
import os
import click
import json
import jsonschema
def validate_json(hotel_json):
schema = {
"type": "object",
"properties": {
"hotel_name": {"type": "string", "description": "Name of hotel"},
"rooms": {"type": "array", "items": {"$ref": "#/definitions/room"}},
},
"definitions": {
"room": {
"type": "object",
"required": ["number", "type", "cost"],
"properties": {
"number": {"type": "integer", "description": "Room number"},
"type": {"type": "integer", "description": "Room type"},
"cost": {
"type": "integer",
"description": "Cost of room per night",
},
},
}
},
"required": ["hotel_name", "rooms"],
}
try:
f = open(hotel_json)
datum = json.load(f)
jsonschema.validate(datum, schema)
return True
except jsonschema.exceptions.ValidationError as e:
click.echo(f"well-formed but invalid JSON: {e}")
return False
except json.decoder.JSONDecodeError as e:
click.echo(f"poorly-formed text, not JSON: {e}")
return False
def handle_session():
if not os.path.exists("session.csv"):
click.echo("No current session.")
raise click.Abort()
def create_temp(hotel_name):
hotel_dir = "data/hotel_" + hotel_name + "\n"
with open("session.csv", "w") as out_file:
out_file.write(hotel_dir)
def get_hotel_path():
with open("session.csv", "r") as fp:
line = fp.readline().rstrip()
return line
def unique_client(client_supp, name, email):
df = client_supp.reset_index()
def find_id(x):
if x["name"] == name and x["email"] == email:
return x["client_id"]
id_list = df.apply(find_id, axis=1).dropna()
return id_list
def get_reservations(r_path):
num_files = os.listdir(r_path)
reservations = pd.DataFrame()
for file in num_files:
room = os.path.splitext(file)[0]
real_file = os.path.join(r_path, file)
df = pd.read_csv(real_file)
datetime_series = pd.to_datetime(df["start"])
datetime_index = pd.DatetimeIndex(datetime_series.values)
df = df.set_index(datetime_index)
df.drop("start", axis=1, inplace=True)
df = df.rename(columns={"client_id": room})
reservations = pd.concat([reservations, df], axis=1, sort=False)
return reservations
def get_intervals(i_path):
num_files = os.listdir(i_path)
intervals = pd.DataFrame()
for file in num_files:
room = os.path.splitext(file)[0]
real_file = os.path.join(i_path, file)
df = pd.read_csv(real_file)
inf_intv = df.isnull().values.any()
if inf_intv:
df["start"] = datetime.now().date()
df["end"] = pd.Timestamp.max.date()
datetime_series = pd.to_datetime(df["start"])
datetime_index = pd.DatetimeIndex(datetime_series.values)
df["end"] = pd.to_datetime(df["end"])
df = df.set_index(datetime_index)
df.drop("start", axis=1, inplace=True)
df = df.rename(columns={"end": room})
intervals = pd.concat([intervals, df], axis=1, sort=False)
return intervals
def add_client_supp(client_supp, name, contact_info):
temp_supp = pd.DataFrame({"name": [name], "email": [contact_info]})
return client_supp.append(temp_supp, ignore_index=True)
def add_client_list(
client_list, state, start, end, res_room, payment_due, paid, curr_room
):
temp_info = pd.DataFrame(
{
"state": [state],
"start": [start],
"end": [end],
"reserved_room": [res_room],
"payment_due": [payment_due],
"paid": [paid],
"curr_room": [curr_room],
}
)
return client_list.append(temp_info, ignore_index=True)
def overwrite_client_supp(client_supp, full_path):
client_supp = client_supp.rename_axis("client_id").reset_index()
client_supp.to_csv(os.path.join(full_path, "client_supp.csv"), index=False)
def overwrite_client_list(client_list, full_path):
client_list = client_list.rename_axis("client_id").reset_index()
client_list.to_csv(os.path.join(full_path, "client_list.csv"), index=False)
def get_room_of_type(hotel, room_type):
room_list = []
for room in hotel["rooms"]:
if room["type"] == room_type:
room_list.append(str(room["number"]))
return room_list
def get_room_number_optimized(intervals, start, end):
"""
Finds the best available rooms given a prospective start & end date.
Arguments:
intervals is type pd.Dataframe(); DatetimeIndex (start), rooms as columns, Datetime (end) as values
start is type Datetime
end is type Datetime
Return:
An ordered list of available rooms
Description:
Intervals contain all the availibility periods of each room, (start, end) represent a prospective new reservation.
This function checks each availibility period to determine the interval that is minimally disrupted (see get_smallest_left())
"""
mask = intervals.index <= start
df = intervals[mask].stack().swaplevel(0, 1).reset_index()
df.columns = ["room", "start", "end"]
def filter(x):
if x["start"].date() < start.date() and end.date() < x["end"].date():
return x
else:
return pd.Series(data=[None, None, None], index=x.index)
df = df.apply(filter, axis=1).dropna()
overlap = df.set_index("room")
room_order = get_smallest_left(overlap, start, end)
return room_order.astype({"order": "int64"})
def get_smallest_left(overlap, start, end):
"""
Determines the amount of disruption of each interval given a prospective start & end date.
Arguments:
overlap is type pd.Dataframe(); rooms as index, start and end columns, values as Datetime
start is type Datetime
end is type Datetime
Return:
Return room_number sorted by smallest disruption
Description:
Overlap represent the single availibility periods of each room which overlaps with the prospective new reservation (start, end).
Disruption is the number of days leftover from the overlap after inserting the prospective reservation
This function calculates for each overlap the amount of disruption.
"""
smallest_remaining = pd.DataFrame(
{"room": overlap.index, "order": ([None] * overlap.index.size)}
)
smallest_remaining.set_index("room", inplace=True)
for index, row in overlap.iterrows():
left = start.date() - row["start"].date()
right = row["end"].date() - end.date()
if left.days < right.days:
smallest_remaining.loc[index, "order"] = int(left.days)
else:
smallest_remaining.loc[index, "order"] = int(right.days)
return smallest_remaining.reset_index().sort_values(by=["order"])
def get_payment(hotel, best_room):
for room in hotel["rooms"]:
if room["number"] == int(best_room):
return room["cost"]
def add_reservations(reservations, room_number, client_id, start):
reservations.loc[start, str(room_number)] = client_id
reservations.sort_index(inplace=True)
def add_intervals(intervals, room_number, start, end, hotel_path):
old_intv = get_old_interval(intervals, room_number, start, end)
new_intv = split_interval(old_intv, start, end)
update_intervals(intervals, new_intv, room_number)
def get_old_interval(intervals, room_number, start, end):
df = intervals[str(room_number)].dropna()
mask = df.index <= start
df = df.loc[mask]
for index, value in df.items():
if index.date() < start.date() and end.date() < value:
return (index.date(), value.date())
def split_interval(old_intv, start, end):
data = [
(old_intv[0], start.date() + timedelta(-1)),
(end.date() + timedelta(1), old_intv[1]),
]
df = pd.DataFrame(data, columns=["start", "end"])
datetime_series = pd.to_datetime(df["start"])
datetime_index = pd.DatetimeIndex(datetime_series.values)
df["end"] = pd.to_datetime(df["end"])
df = df.set_index(datetime_index)
return df.drop("start", axis=1)
def update_intervals(intervals, new_intervals, room_number):
old_start = new_intervals.index[0]
new_start = new_intervals.index[1]
intervals.loc[old_start, str(room_number)] = new_intervals.loc[old_start, "end"]
intervals.loc[new_start, str(room_number)] = new_intervals.loc[new_start, "end"]
intervals.sort_index(inplace=True)
def add_reservation_client_list(
client_list, client_id, state, start, end, best_room, payment_due, paid
):
client_list.loc[client_id, "start"] = start.date()
client_list.loc[client_id, "end"] = end.date()
client_list.loc[client_id, "reserved_room"] = best_room
client_list.loc[client_id, "payment_due"] = payment_due
client_list.loc[client_id, "paid"] = paid
client_list.loc[client_id, "state"] = state
def remove_reservation_client_list(client_list, client_id):
client_list.loc[client_id, "start"] = None
client_list.loc[client_id, "end"] = None
client_list.loc[client_id, "reserved_room"] = -1
client_list.loc[client_id, "payment_due"] = None
client_list.loc[client_id, "paid"] = False
client_list.loc[client_id, "state"] = 3
def remove_reservations(reservations, res_start):
reservations.drop(datetime.strptime(res_start, "%Y-%m-%d"), inplace=True)
def remove_intervals(intervals, start, end, room_number):
old_intv_end = datetime.strptime(start, "%Y-%m-%d") + timedelta(-1)
old_intv_start = datetime.strptime(end, "%Y-%m-%d") + timedelta(1)
new_intv_start = intervals.loc[
intervals[str(room_number)] == old_intv_end
].index.date[0]
new_intv_end = intervals.loc[old_intv_start, str(room_number)]
intervals.loc[np.datetime64(new_intv_start), str(room_number)] = new_intv_end
intervals.loc[old_intv_start, str(room_number)] = None
intervals.dropna(axis=0, how="all", inplace=True)
def checkin_client_list(client_list, client_id):
client_list.loc[client_id, "state"] = 1
client_list.loc[client_id, "curr_room"] = client_list.loc[
client_id, "reserved_room"
]
def pop_reservation(reservations, res_start, room_number):
reservations.loc[res_start, str(room_number)] = None
def checkout_client_list(client_list, client_id, paid):
client_list.loc[client_id, "state"] = 3
client_list.loc[client_id, "start"] = None
client_list.loc[client_id, "end"] = None
client_list.loc[client_id, "reserved_room"] = -1
client_list.loc[client_id, "payment_due"] = None
client_list.loc[client_id, "paid"] = paid
client_list.loc[client_id, "curr_room"] = -1
def overwrite_intervals(intervals, script_dir, hotel_path, room_number):
df = intervals[str(room_number)].dropna()
rooms_path = os.path.join(hotel_path, "rooms/intervals")
full_path = os.path.join(script_dir, rooms_path)
file_name = str(room_number) + ".csv"
with open(os.path.join(full_path, file_name), "w") as file:
file.write("start,end\n")
df.to_csv(file, header=False, index=True)
def overwrite_reservations(reservations, script_dir, hotel_path, room_number):
df = reservations[str(room_number)].dropna()
rooms_path = os.path.join(hotel_path, "rooms/reservations")
full_path = os.path.join(script_dir, rooms_path)
file_name = str(room_number) + ".csv"
with open(os.path.join(full_path, file_name), "w") as file:
file.write("start,client_id\n")
df.to_csv(file, header=False, index=True)