-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathslow_clock_test.c
493 lines (338 loc) · 11.1 KB
/
slow_clock_test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
/*
Prerequisites:
- Innova2 FPGA programmed with slow_clock_test project:
github.com/mwrnd/innova2_experiments/slow_clock_test
- XDMA Drivers from github.com/xilinx/dma_ip_drivers
Install Instructions at github.com/mwrnd/innova2_flex_xcku15p_notes
Compile with:
gcc slow_clock_test.c -g -Wall -o slow_clock_test
Run with:
sudo ./slow_clock_test /dev/xdma0_c2h_0 /dev/xdma0_h2c_0
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <errno.h>
#include <sys/types.h>
#include <unistd.h>
// Using 8 kilobyte == 2^13 = 8192 byte array. Size was defined in the
// Vivado FPGA Project Block Diagram Address Editor as the Data Range for BRAM
// On Linux, read/write can transfer at most 0x7FFFF000 (2,147,479,552) bytes
#define DATA_SIZE 8192
// The XDMA AXI aclk depends on PCIe Lane Width, AXI Data Width, and
// Maximum Link Speed settings in the XDMA IP Block
#define XDMA_CLK_MHz 250
uint32_t diff(uint32_t a, uint32_t b)
{
// Need difference of either 16-bit or 32-bit values
if ((a < 0xFFFF) && (b < 0xFFFF)) {
if (b >= a) {
return (b - a);
} else { // b < a
return ((0xFFFF - a) + b);
}
} else { // a or b > 0xFFFF
if (b >= a) {
return (b - a);
} else { // b < a
return ((0xFFFFFFFF - a) + b);
}
}
}
int estimate_clock_MHz(uint8_t delay,
int xdma_fd_read,
char *xdma_c2h_name,
uint64_t axi_gpio_addr,
int flg_gpio_type)
{
uint8_t read_data[16];
uint32_t val = 0;
uint32_t val1 = 0;
uint32_t val2 = 0;
uint32_t val3 = 0;
uint32_t val4 = 0;
uint32_t diff_clkA;
uint32_t diff_clkB;
ssize_t rc;
double clk_ratio = 0;
if (axi_gpio_addr == 0) { return -1; }
// Read 4 bytes = 1 word using pread which combines lseek and read
rc = pread(xdma_fd_read, read_data, 16, axi_gpio_addr);
if (rc < 0) {
fprintf(stderr, "%s, read data @ 0x%lX failed, %ld.\n",
xdma_c2h_name, axi_gpio_addr, rc);
perror("File Read");
return -EIO;
}
if (flg_gpio_type == 1) {
memcpy(&val, &read_data[0], 4);
val1 = (val & 0x0000FFFF) >> 0;
val2 = (val & 0xFFFF0000) >> 16;
printf("\nt=0 clock counter values at 0x%lX : 0x%04X 0x%04X\n",
axi_gpio_addr, val1, val2);
} else {
memcpy(&val1, &read_data[0], 4);
memcpy(&val2, &read_data[8], 4);
printf("\nt=0 clock counter values at 0x%lX : 0x%08X 0x%08X\n",
axi_gpio_addr, val1, val2);
}
sleep(delay);
rc = pread(xdma_fd_read, read_data, 16, axi_gpio_addr);
if (rc < 0) {
fprintf(stderr, "%s, read data @ 0x%lX failed, %ld.\n",
xdma_c2h_name, axi_gpio_addr, rc);
perror("File Read");
return -EIO;
}
if (flg_gpio_type == 1) {
memcpy(&val, &read_data[0], 4);
val3 = (val & 0x0000FFFF) >> 0;
val4 = (val & 0xFFFF0000) >> 16;
printf("t=%d clock counter values at 0x%lX : 0x%04X 0x%04X\n",
delay, axi_gpio_addr, val3, val4);
} else {
memcpy(&val3, &read_data[0], 4);
memcpy(&val4, &read_data[8], 4);
printf("t=%d clock counter values at 0x%lX : 0x%08X 0x%08X\n",
delay, axi_gpio_addr, val3, val4);
}
diff_clkA = diff(val1, val3);
diff_clkB = diff(val2, val4);
clk_ratio =(((double)diff_clkB)/((double)diff_clkA));
printf(" Clock at 0x%08lX has ratio = %lf, estimate %lf MHz",
axi_gpio_addr, clk_ratio, (clk_ratio * XDMA_CLK_MHz));
if ((clk_ratio * XDMA_CLK_MHz) < 1) {
printf(" = % 9.0lf Hz\n",
(clk_ratio * (XDMA_CLK_MHz * 1000000)));
} else {
printf("\n");
}
return 0;
}
int main(int argc, char **argv)
{
uint64_t axi_bram_addr = 0xC0000000;
uint64_t axi_gpio0_addr = 0x40000000;
uint64_t axi_gpio1_addr = 0x40010000;
uint64_t axi_gpio2_addr = 0x40020000;
uint64_t axi_gpio3_addr = 0x40030000;
uint64_t axi_gpio4_addr = 0x40040000;
uint64_t axi_gpio5_addr = 0x40050000;
uint64_t axi_gpio6_addr = 0x40060000;
uint64_t axi_gpio7_addr = 0x40070000;
uint64_t axi_gpio8_addr = 0x40080000;
uint64_t axi_gpio9_addr = 0x40090000;
int xdma_fd_read;
int xdma_fd_wrte;
char *xdma_c2h_name;
char *xdma_h2c_name;
uint8_t wrte_data[DATA_SIZE];
uint8_t read_data[DATA_SIZE];
uint32_t val = 0;
int errorcount = 0;
ssize_t rc;
// Display Program Usage Instructions
if (argc != 3)
{
printf("%s is a simple FPGA XDMA Test Program\n", argv[0]);
printf("that reads and writes to BRAM, toggles LEDs,\n");
printf("and determines the period of various clocks.\n");
printf("Usage:\n");
printf(" sudo %s C2H_DEVICE_NAME H2C_DEVICE_NAME", argv[0]);
printf("\nExample:\n");
printf(" sudo %s /dev/xdma0_c2h_0 /dev/xdma0_h2c_0", argv[0]);
printf("\n");
exit(EXIT_FAILURE);
}
// Read in Program Arguments
xdma_fd_read = 0;
xdma_fd_wrte = 0;
xdma_c2h_name = malloc(strlen(argv[1]));
if (!(xdma_c2h_name)) { printf("malloc failed in main, c2h");exit(-1);}
xdma_h2c_name = malloc(strlen(argv[2]));
if (!(xdma_h2c_name)) { printf("malloc failed in main, h2c");exit(-1);}
strncpy(xdma_c2h_name, argv[1], strlen(argv[1]));
strncpy(xdma_h2c_name, argv[2], strlen(argv[2]));
printf("FPGA XDMA AXI BRAM GPIO Clock Test Program\n");
printf("C2H Device: %s\n", xdma_c2h_name);
printf("H2C Device: %s\n", xdma_h2c_name);
printf("AXI BRAM Address: 0x%0lX = %ld\n",
axi_bram_addr, axi_bram_addr);
printf("AXI GPIO0 Address: 0x%0lX = %ld\n",
axi_gpio0_addr, axi_gpio0_addr);
printf("AXI GPIO1 Address: 0x%0lX = %ld\n",
axi_gpio1_addr, axi_gpio1_addr);
printf("AXI GPIO2 Address: 0x%0lX = %ld\n",
axi_gpio2_addr, axi_gpio2_addr);
printf("AXI GPIO3 Address: 0x%0lX = %ld\n",
axi_gpio3_addr, axi_gpio3_addr);
printf("AXI GPIO4 Address: 0x%0lX = %ld\n",
axi_gpio4_addr, axi_gpio4_addr);
printf("AXI GPIO5 Address: 0x%0lX = %ld\n",
axi_gpio5_addr, axi_gpio5_addr);
printf("AXI GPIO6 Address: 0x%0lX = %ld\n",
axi_gpio6_addr, axi_gpio6_addr);
printf("AXI GPIO7 Address: 0x%0lX = %ld\n",
axi_gpio7_addr, axi_gpio7_addr);
printf("AXI GPIO8 Address: 0x%0lX = %ld\n",
axi_gpio8_addr, axi_gpio8_addr);
printf("AXI GPIO9 Address: 0x%0lX = %ld\n",
axi_gpio9_addr, axi_gpio9_addr);
// Open the XDMA Files
xdma_fd_wrte = open(xdma_h2c_name, O_WRONLY);
if (xdma_fd_wrte < 0) {
fprintf(stderr, "unable to open write device %s, %d.\n",
xdma_h2c_name, xdma_fd_wrte);
perror("File Open");
}
xdma_fd_read = open(xdma_c2h_name, O_RDONLY);
if (xdma_fd_read < 0) {
fprintf(stderr, "unable to open read device %s, %d.\n",
xdma_c2h_name, xdma_fd_read);
perror("File Open");
}
// Generate Random Data
// Seed the random number generator with an address returned by malloc
srandom((int)((long int)xdma_c2h_name));
// Generate a random data array of size DATA_SIZE
for (int indx = 0; indx < DATA_SIZE ; indx = indx + 4)
{
val = rand();
memcpy(&wrte_data[indx], &val, 4);
}
// -------- AXI BRAM Write then Read Test ----------------------------
// Write the random data to the FPGA's AXI BRAM
rc = lseek(xdma_fd_wrte, axi_bram_addr, SEEK_SET);
if (rc < 0) {
fprintf(stderr, "%s, seek offset failed at 0x%lX, 0x%ld.\n",
xdma_h2c_name, axi_bram_addr, rc);
perror("File Seek");
return -EIO;
}
rc = write(xdma_fd_wrte, wrte_data, DATA_SIZE);
if (rc < 0) {
fprintf(stderr, "%s, write data @ 0x%lX failed, %ld.\n",
xdma_h2c_name, axi_bram_addr, rc);
perror("File Write");
return -EIO;
}
if (rc != DATA_SIZE) {
fprintf(stderr, "%s, write underflow 0x%ld/0x%d @ 0x%lx.\n",
xdma_h2c_name, rc, DATA_SIZE, axi_bram_addr);
return -EIO;
}
printf("\nWrote %ld bytes to %s at address 0x%lX\n",
rc, xdma_h2c_name, axi_bram_addr);
// Read data from the FPGA's AXI BRAM
rc = lseek(xdma_fd_read, axi_bram_addr, SEEK_SET);
if (rc < 0) {
fprintf(stderr, "%s, seek offset failed at 0x%lX, 0x%ld.\n",
xdma_c2h_name, axi_bram_addr, rc);
perror("File Seek");
return -EIO;
}
rc = read(xdma_fd_read, read_data, DATA_SIZE);
if (rc < 0) {
fprintf(stderr, "%s, read data @ 0x%lX failed, %ld.\n",
xdma_c2h_name, axi_bram_addr, rc);
perror("File Read");
return -EIO;
}
if (rc != DATA_SIZE) {
fprintf(stderr, "%s, read underflow 0x%ld/0x%d @ 0x%lx.\n",
xdma_c2h_name, rc, DATA_SIZE, axi_bram_addr);
return -EIO;
}
printf("\nRead %ld bytes from %s at address 0x%lX\n",
rc, xdma_c2h_name, axi_bram_addr);
// Compare the Written and Read Data
errorcount = 0;
for (int indx = 0; indx < DATA_SIZE ; indx++)
{
if (read_data[indx] != wrte_data[indx])
{
errorcount++;
printf("Data did not match at index %d, ", indx);
printf("read_data = 0x%02X, wrte_data = 0x%02X\n",
read_data[indx], wrte_data[indx]);
}
// too many errors, something is wrong, do not check any more
if (errorcount > 7 ) { break; }
}
if (errorcount == 0)
{
printf("\nSuccess - Read Data matches Written Data!\n\n");
} else {
printf("Too many errors encountered, something is wrong.\n\n");
}
// -------- AXI GPIO0 LED Test ----------------------------------------
// Toggle LED once a second for 6 seconds
for (int indx = 0; indx < 7 ; indx++)
{
// LED in design is controlled by the LSB of the first byte
wrte_data[0] = (0x01 & (uint8_t)indx);
// Write 1 byte using pwrite, which combines lseek and write
rc = pwrite(xdma_fd_wrte, (char *)wrte_data, 1, axi_gpio0_addr);
//fsync(xdma_fd_wrte);
if (rc < 0) {
fprintf(stderr, "%s, write byte @ 0x%lX failed, %ld.\n",
xdma_h2c_name, axi_gpio0_addr, rc);
perror("File Write");
return -EIO;
}
printf("Wrote 0x%02X to %s at address 0x%lX",
wrte_data[0], xdma_h2c_name, axi_gpio0_addr);
if (wrte_data[0]) {
printf(", LED D18 should be ON.\n");
} else {
printf(", LED D18 should be OFF.\n");
}
sleep(1);
}
printf("\n");
// -------- AXI GPIO8 LED Test ----------------------------------------
// Toggle LED once a second for 6 seconds
for (int indx = 0; indx < 7 ; indx++)
{
// LED in design is controlled by the LSB of the first byte
wrte_data[0] = (0x01 & (uint8_t)indx);
// Write 1 byte using pwrite, which combines lseek and write
rc = pwrite(xdma_fd_wrte, (char *)wrte_data, 1, axi_gpio8_addr);
//fsync(xdma_fd_wrte);
if (rc < 0) {
fprintf(stderr, "%s, write byte @ 0x%lX failed, %ld.\n",
xdma_h2c_name, axi_gpio8_addr, rc);
perror("File Write");
return -EIO;
}
printf("Wrote 0x%02X to %s at address 0x%lX",
wrte_data[0], xdma_h2c_name, axi_gpio8_addr);
if (wrte_data[0]) {
printf(", LED D19 should be ON.\n");
} else {
printf(", LED D19 should be OFF.\n");
}
sleep(1);
}
printf("\n\nCompare clocks against %dMHz XDMA axi_aclk:", XDMA_CLK_MHz);
for (int i = 1 ; i < 4 ; i++) {
printf("\n------------------------------------------------------\n");
estimate_clock_MHz(i, xdma_fd_read, xdma_c2h_name, axi_gpio1_addr, 1);
estimate_clock_MHz(i, xdma_fd_read, xdma_c2h_name, axi_gpio2_addr, 1);
estimate_clock_MHz(i, xdma_fd_read, xdma_c2h_name, axi_gpio3_addr, 1);
estimate_clock_MHz(i, xdma_fd_read, xdma_c2h_name, axi_gpio4_addr, 2);
estimate_clock_MHz(i, xdma_fd_read, xdma_c2h_name, axi_gpio5_addr, 2);
estimate_clock_MHz(i, xdma_fd_read, xdma_c2h_name, axi_gpio6_addr, 2);
estimate_clock_MHz(i, xdma_fd_read, xdma_c2h_name, axi_gpio7_addr, 1);
estimate_clock_MHz(i, xdma_fd_read, xdma_c2h_name, axi_gpio9_addr, 2);
}
printf("\n");
close(xdma_fd_wrte);
close(xdma_fd_read);
exit(EXIT_SUCCESS);
}