-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_train.py
63 lines (43 loc) · 2.2 KB
/
cnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from keras.models import Sequential
from keras.layers import Convolution2D, Dense, Flatten, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
model= Sequential()
model.add(Convolution2D(32, (5, 5), strides=(2, 2), activation='relu', input_shape=(200, 200,1)))
model.add(MaxPooling2D((2, 2)))
model.add(Convolution2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Convolution2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(4, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
#Now generate training and test sets from folders
train_datagen=ImageDataGenerator(
rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.,
horizontal_flip = False
)
test_datagen=ImageDataGenerator(rescale=1./255)
training_set=train_datagen.flow_from_directory("Dataset/training_set",
target_size = (200,200),
color_mode='grayscale',
batch_size=10,
class_mode='categorical')
test_set=test_datagen.flow_from_directory("Dataset/test_set",
target_size = (200,200),
color_mode='grayscale',
batch_size=10,
class_mode='categorical')
# start to train
model.fit_generator(training_set,
samples_per_epoch = 3000,
nb_epoch = 10,
validation_data = test_set,
nb_val_samples = 320)
model.save_weights("weights.hdf5",overwrite=True)
model_json = model.to_json()
with open("model.json", "w") as model_file:
model_file.write(model_json)
print("Finished.")