-
-
Notifications
You must be signed in to change notification settings - Fork 219
/
Copy pathblock.py
227 lines (173 loc) · 6.16 KB
/
block.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from .columns.util import get_inner_spec, get_inner_columns_with_types
from .reader import read_varint, read_binary_uint8, read_binary_int32
from .varint import write_varint
from .writer import write_binary_uint8, write_binary_int32
class BlockInfo(object):
is_overflows = False
bucket_num = -1
def write(self, buf):
# Set of pairs (`FIELD_NUM`, value) in binary form. Then 0.
write_varint(1, buf)
write_binary_uint8(self.is_overflows, buf)
write_varint(2, buf)
write_binary_int32(self.bucket_num, buf)
write_varint(0, buf)
def read(self, buf):
while True:
field_num = read_varint(buf)
if not field_num:
break
if field_num == 1:
self.is_overflows = bool(read_binary_uint8(buf))
elif field_num == 2:
self.bucket_num = read_binary_int32(buf)
class BaseBlock(object):
def __init__(self, columns_with_types=None, data=None,
info=None, types_check=False):
self.columns_with_types = columns_with_types or []
self.types_check = types_check
self.info = info or BlockInfo()
self.data = self.normalize(data or [])
super(BaseBlock, self).__init__()
def normalize(self, data):
return data
@property
def num_columns(self):
raise NotImplementedError
@property
def num_rows(self):
raise NotImplementedError
def get_columns(self):
raise NotImplementedError
def get_rows(self):
raise NotImplementedError
def get_column_by_index(self, index):
raise NotImplementedError
def transposed(self):
return list(zip(*self.data))
class ColumnOrientedBlock(BaseBlock):
def normalize(self, data):
if not data:
return []
self._check_number_of_columns(data)
self._check_all_columns_equal_length(data)
return data
@property
def num_columns(self):
return len(self.data)
@property
def num_rows(self):
return len(self.data[0]) if self.num_columns else 0
def get_columns(self):
return self.data
def get_rows(self):
return self.transposed()
def get_column_by_index(self, index):
return self.data[index]
def _check_number_of_columns(self, data):
expected_row_len = len(self.columns_with_types)
got = len(data)
if expected_row_len != got:
msg = 'Expected {} columns, got {}'.format(expected_row_len, got)
raise ValueError(msg)
def _check_all_columns_equal_length(self, data):
expected = len(data[0])
for column in data:
got = len(column)
if got != expected:
msg = 'Expected {} rows, got {}'.format(expected, got)
raise ValueError(msg)
class RowOrientedBlock(BaseBlock):
dict_row_types = (dict, )
tuple_row_types = (list, tuple)
supported_row_types = dict_row_types + tuple_row_types
def normalize(self, data):
if not data:
return []
# Guessing about whole data format by first row.
first_row = data[0]
if self.types_check:
self._check_row_type(first_row)
if isinstance(first_row, dict):
self._mutate_dicts_to_rows(data)
else:
self._check_rows(data)
return data
@property
def num_columns(self):
if self.columns_with_types is not None:
return len(self.columns_with_types)
return len(self.data[0]) if self.num_rows else 0
@property
def num_rows(self):
return len(self.data)
def get_columns(self):
return self.transposed()
def get_rows(self):
return self.data
def get_column_by_index(self, index):
return [row[index] for row in self.data]
def _mutate_dicts_to_rows(self, data):
check_row_type = False
if self.types_check:
check_row_type = self._check_dict_row_type
return self._pure_mutate_dicts_to_rows(
data,
self.columns_with_types,
check_row_type,
)
def _pure_mutate_dicts_to_rows(
self,
data,
columns_with_types,
check_row_type,
):
columns_with_cwt = []
for name, type_ in columns_with_types:
cwt = None
if type_.startswith('Nested'):
inner_spec = get_inner_spec('Nested', type_)
cwt = get_inner_columns_with_types(inner_spec)
columns_with_cwt.append((name, cwt))
for i, row in enumerate(data):
if check_row_type:
check_row_type(row)
new_data = []
for name, cwt in columns_with_cwt:
if cwt is None:
new_data.append(row[name])
else:
new_data.append(self._pure_mutate_dicts_to_rows(
row[name], cwt, check_row_type
))
data[i] = new_data
# return for recursion
return data
def _check_rows(self, data):
expected_row_len = len(self.columns_with_types)
got = len(data[0])
if expected_row_len != got:
msg = 'Expected {} columns, got {}'.format(expected_row_len, got)
raise ValueError(msg)
if self.types_check:
check_row_type = self._check_tuple_row_type
for row in data:
check_row_type(row)
def _check_row_type(self, row):
if not isinstance(row, self.supported_row_types):
raise TypeError(
'Unsupported row type: {}. dict, list or tuple is expected.'
.format(type(row))
)
def _check_tuple_row_type(self, row):
if not isinstance(row, self.tuple_row_types):
raise TypeError(
'Unsupported row type: {}. list or tuple is expected.'
.format(type(row))
)
def _check_dict_row_type(self, row):
if not isinstance(row, self.dict_row_types):
raise TypeError(
'Unsupported row type: {}. dict is expected.'
.format(type(row))
)