-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
81 lines (59 loc) · 3.47 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from __future__ import print_function
import torch, sys, pdb
from utils_modified import q
#import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
#import torch.optim as optim
class Word2Vec_neg_sampling(nn.Module):
def __init__(self, embedding_size, vocab_size, device, noise_dist = None, negative_samples = 10):
super(Word2Vec_neg_sampling, self).__init__()
self.embeddings_input = nn.Embedding(vocab_size, embedding_size)
self.embeddings_context = nn.Embedding(vocab_size, embedding_size)
self.vocab_size = vocab_size
self.negative_samples = negative_samples
self.device = device
self.noise_dist = noise_dist
# Initialize both embedding tables with uniform distribution
self.embeddings_input.weight.data.uniform_(-1,1)
self.embeddings_context.weight.data.uniform_(-1,1)
def forward(self, input_word, context_word):
debug = not True
if debug:
print('input_word.shape: ', input_word.shape) # bs
print('context_word.shape: ', context_word.shape) # bs
# computing out loss
emb_input = self.embeddings_input(input_word) # bs, emb_dim
if debug:print('emb_input.shape: ', emb_input.shape)
emb_context = self.embeddings_context(context_word) # bs, emb_dim
if debug:print('emb_context.shape: ', emb_context.shape)
emb_product = torch.mul(emb_input, emb_context) # bs, emb_dim
if debug:print('emb_product.shape: ', emb_product.shape)
emb_product = torch.sum(emb_product, dim=1) # bs
if debug:print('emb_product.shape: ', emb_product.shape)
out_loss = F.logsigmoid(emb_product) # bs
if debug:print('out_loss.shape: ', out_loss.shape)
if self.negative_samples > 0:
# computing negative loss
if self.noise_dist is None:
noise_dist = torch.ones(self.vocab_size)
else:
noise_dist = self.noise_dist
if debug:print('noise_dist.shape: ', noise_dist.shape)
num_neg_samples_for_this_batch = context_word.shape[0]*self.negative_samples
negative_example = torch.multinomial(noise_dist, num_neg_samples_for_this_batch, replacement = True) # coz bs*num_neg_samples > vocab_size
if debug:print('negative_example.shape: ', negative_example.shape)
negative_example = negative_example.view(context_word.shape[0], self.negative_samples).to(self.device) # bs, num_neg_samples
if debug:print('negative_example.shape: ', negative_example.shape)
emb_negative = self.embeddings_context(negative_example) # bs, neg_samples, emb_dim
if debug:print('emb_negative.shape: ', emb_negative.shape)
if debug:print('emb_input.unsqueeze(2).shape: ', emb_input.unsqueeze(2).shape) # bs, emb_dim, 1
emb_product_neg_samples = torch.bmm(emb_negative.neg(), emb_input.unsqueeze(2)) # bs, neg_samples, 1
if debug:print('emb_product_neg_samples.shape: ', emb_product_neg_samples.shape)
noise_loss = F.logsigmoid(emb_product_neg_samples).squeeze(2).sum(1) # bs
if debug:print('noise_loss.shape: ', noise_loss.shape)
total_loss = -(out_loss + noise_loss).mean()
if debug:print('total_loss.shape: ', total_loss.shape)
return total_loss
else:
return -(out_loss).mean()