Visualization of the learning routines
library(rio );
uninstr <- import(' https://raw.githubusercontent.com/n400peanuts/code_showcase/master/uninstrLearning.txt' )
instr <- import(' https://raw.githubusercontent.com/n400peanuts/code_showcase/master/instrLearning.txt' , fill = T );
Performance of Uninstructed learning
temp1 <- aggregate(Acc ~ Subject + Blocco , data = uninstr , FUN = mean );
par(mfrow = c(1 ,2 ));
boxplot(temp1 $ Acc ~ temp1 $ Blocco , range = 1 , outline = F , bty = ' n' , ylim = c(.40 ,1 ), xlab = ' Blocks' , ylab = ' accuracy' , notch = F , axes = F )
axis(1 , at = c(1 ,5 ,10 ,15 ))
axis(2 , at = seq(.40 ,1 ,.10 ))
myPalette <- grey(seq(0 ,0.8 ,.02 ))
plot(temp1 $ Acc [temp1 $ Subject == 17 ] ~ temp1 $ Blocco [temp1 $ Subject == 17 ], pch = 19 , type = ' b' , ylim = c(.30 ,1 ), bty = ' n' , xlab = ' Blocks' , ylab = ' accuracy' , axes = F )
axis(1 , at = c(1 ,5 ,10 ,15 ))
axis(2 , at = seq(.30 ,1 ,.10 ))
counter <- 2 ;
for (i in unique(temp1 $ Subject ))
{
lines(temp1 $ Acc [temp1 $ Subject == i ] ~ temp1 $ Blocco [temp1 $ Subject == i ], pch = 19 , type = ' b' , col = myPalette [counter ]);
counter <- counter + 1
abline(h = .50 , col = ' red' , lwd = 2 );
}
Performance of Instructed learning
library(ggplot2 );
library(ggpubr );
## Loading required package: magrittr
dataInstr <- aggregate(Acc ~ Subject + Blocco , data = instr , FUN = mean );
ggboxplot(dataInstr , x = " Blocco" , y = " Acc" , combine = T ,
add = " jitter" , add.params = list (size = 0.1 , jitter = 0.2 ))