-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
37 lines (29 loc) · 1.03 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from typing import Optional, Union
def evaluate_error(model: nn.Module,
data_loader: DataLoader,
device: str,
n: Optional[int] = None) -> float:
"""Evaluates error on n batches (default: n=len(data_loader))"""
model.eval()
n = len(data_loader) if n is None else n
with torch.no_grad():
error = 0
total = 0
for i, (images, labels) in enumerate(data_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
error += (predicted != labels).sum().item()
if (i + 1) == n:
break
return error/total
import pickle
import pathlib
def save_experiment(experiment: dict, filepath: Union[str, pathlib.PosixPath]) -> None:
with open(filepath, 'wb') as f:
pickle.dump(experiment, f)