-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHelmet_detection_YOLOV3.py
172 lines (139 loc) · 6.46 KB
/
Helmet_detection_YOLOV3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from time import sleep
import cv2
import argparse
import sys
import numpy as np
import os.path
from glob import glob
#from PIL import image
frame_count = 0 # used in mainloop where we're extracting images., and then to drawPred( called by post process)
frame_count_out=0 # used in post process loop, to get the no of specified class value.
# Initialize the parameters
confThreshold = 0.5 #Confidence threshold
nmsThreshold = 0.4 #Non-maximum suppression threshold
inpWidth = 416 #Width of network's input image
inpHeight = 416 #Height of network's input image
# Load names of classes
classesFile = "obj.names";
classes = None
with open(classesFile, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# Give the configuration and weight files for the model and load the network using them.
modelConfiguration = "yolov3-obj.cfg";
modelWeights = "yolov3-obj_2400.weights";
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
# Get the names of the output layers
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# Draw the predicted bounding box
def drawPred(classId, conf, left, top, right, bottom):
global frame_count
# Draw a bounding box.
cv2.rectangle(frame, (left, top), (right, bottom), (255, 178, 50), 3)
label = '%.2f' % conf
# Get the label for the class name and its confidence
if classes:
assert(classId < len(classes))
label = '%s:%s' % (classes[classId], label)
#Display the label at the top of the bounding box
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
#print(label) #testing
#print(labelSize) #testing
#print(baseLine) #testing
label_name,label_conf = label.split(':') #spliting into class & confidance. will compare it with person.
if label_name == 'Helmet':
#will try to print of label have people.. or can put a counter to find the no of people occurance.
#will try if it satisfy the condition otherwise, we won't print the boxes or leave it.
cv2.rectangle(frame, (left, top - round(1.5*labelSize[1])), (left + round(1.5*labelSize[0]), top + baseLine), (255, 255, 255), cv2.FILLED)
cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0,0,0), 1)
frame_count+=1
#print(frame_count)
if(frame_count> 0):
return frame_count
# Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
global frame_count_out
frame_count_out=0
classIds = []
confidences = []
boxes = []
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = [] #have to fins which class have hieghest confidence........=====>>><<<<=======
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
#print(classIds)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
# Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv2.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
count_person=0 # for counting the classes in this loop.
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
#this function in loop is calling drawPred so, try pushing one test counter in parameter , so it can calculate it.
frame_count_out = drawPred(classIds[i], confidences[i], left, top, left + width, top + height)
#increase test counter till the loop end then print...
#checking class, if it is a person or not
my_class='Helmet' #======================================== mycode .....
unknown_class = classes[classId]
if my_class == unknown_class:
count_person += 1
#if(frame_count_out > 0):
print(frame_count_out)
if count_person >= 1:
path = 'test_out/'
frame_name=os.path.basename(fn) # trimm the path and give file name.
cv2.imwrite(str(path)+frame_name, frame) # writing to folder.
#print(type(frame))
cv2.imshow('img',frame)
cv2.waitKey(800)
#cv2.imwrite(frame_name, frame)
#======================================mycode.........
# Process inputs
winName = 'Deep learning object detection in OpenCV'
cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
for fn in glob('images/*.jpg'):
frame = cv2.imread(fn)
frame_count =0
# Create a 4D blob from a frame.
blob = cv2.dnn.blobFromImage(frame, 1/255, (inpWidth, inpHeight), [0,0,0], 1, crop=False)
# Sets the input to the network
net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = net.forward(getOutputsNames(net))
# Remove the bounding boxes with low confidence
postprocess(frame, outs)
# Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
t, _ = net.getPerfProfile()
#print(t)
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
#print(label)
cv2.putText(frame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
#print(label)