-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathCITATION.cff
40 lines (37 loc) · 1.17 KB
/
CITATION.cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: >-
PyTorch Implementation of Physics Informed Neural Network
(PINN)
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Nandita
family-names: Doloi
email: [email protected]
orcid: 'https://orcid.org/0009-0007-1948-004X'
identifiers:
- type: url
value: 'https://github.com/nanditadoloi/PINN'
description: Github Code Repository
repository: >-
https://onepetro.org/SPERCSC/proceedings-abstract/22RCSC/1-22RCSC/515732
abstract: >-
This repository contains my simple and clear to understand
implementation of the paper [1]. As an example, I solved
the 1D heat partial differential equation.
[1] Raissi, Maziar, Paris Perdikaris, and George E.
Karniadakis. "Physics-informed neural networks: A deep
learning framework for solving forward and inverse
problems involving nonlinear partial differential
equations." Journal of Computational Physics 378 (2019):
686-707.
keywords:
- pinn
- pytorch
- github
- nandita doloi
license: MIT