This repository has been archived by the owner on Jan 26, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Snakefile
205 lines (174 loc) · 7.1 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import sys
import time
import os
from os import path
import pandas as pd
from glob import glob
import re
from threading import Lock
from itertools import zip_longest
from collections import OrderedDict, namedtuple
if not workflow.overwrite_configfiles:
configfile: "config.yml"
WORKDIR = path.abspath(path.join(config["workdir_top"], config["pipeline"]))
workdir: WORKDIR
SNAKEDIR = path.dirname(workflow.snakefile)
include: "snakelib/utils.snake"
in_fastq = config["reads_fastq"]
if not path.isabs(in_fastq):
in_fastq = path.join(SNAKEDIR, in_fastq)
class Node:
def __init__(self, Id, File, Left, Right, Parent, Level):
self.Id = Id
self.File = File
self.Left = Left
self.Right = Right
self.Parent = Parent
self.Level = Level
self.Done = False
self.RightSide = False
def __repr__(self):
return "Node:{} Level: {} File: {} Done: {} Left: {} Right: {} Parent: {}".format(self.Id, self.Level, self.File, self.Done, self.Left.Id if self.Left is not None else None, self.Right.Id if self.Right is not None else None, self.Parent.Id if self.Parent is not None else None)
def grouper(n, iterable, fillvalue=None):
"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return zip_longest(fillvalue=fillvalue, *args)
def build_job_tree(batch_dir):
batches = glob("{}/isONbatch_*.cer".format(batch_dir))
batch_ids = [int(re.search('/isONbatch_(.*)\.cer$', x).group(1)) for x in batches]
global LEVELS
global JOB_TREE
LEVELS = OrderedDict()
LEVELS[0] = []
for Id, bf in sorted(zip(batch_ids, batches), key=lambda x: x[0]):
n = Node(Id, "clusters/isONcluster_{}.cer".format(Id), None, None, None, 0)
n.Done = True
JOB_TREE[Id] = n
LEVELS[0].append(n)
level = 0
max_id = LEVELS[0][-1].Id
while len(LEVELS[level]) != 1:
next_level = level + 1
LEVELS[next_level] = []
for l, r in grouper(2, LEVELS[level]):
if r is None:
LEVELS[level].pop()
l.Level += 1
LEVELS[next_level].append(l)
continue
max_id += 1
new_batch = "clusters/isONcluster_{}.cer".format(max_id)
new_node = Node(max_id, new_batch, l, r, None, next_level)
l.Parent = new_node
r.Parent = new_node
r.RightSide = True
LEVELS[next_level].append(new_node)
JOB_TREE[max_id] = new_node
level = next_level
global ROOT
ROOT = JOB_TREE[len(JOB_TREE)-1].Id
JOB_TREE[ROOT].RightSide = True
print("Merge clustering job tree nodes:",file=sys.stderr)
for n in JOB_TREE.values():
print("\t{}".format(n),file=sys.stderr)
def generate_rules(levels, snk):
init_template = """
rule cluster_job_%d:
input:
left = "sorted/batches/isONbatch_%d.cer",
output: "clusters/isONcluster_%d.cer"
shell: "isONclust2 cluster -x %s -v -Q -l %s -o %s %s; sync"
"""
template = """
rule cluster_job_%d:
input:
left = "clusters/isONcluster_%d.cer",
right = "clusters/isONcluster_%d.cer",
output: "clusters/isONcluster_%d.cer"
shell: "isONclust2 cluster -x %s -v -Q -l %s -r %s -o %s %s; sync"
"""
link_template="""
rule link_root:
input: "clusters/isONcluster_%d.cer",
output: "clusters/isONcluster_ROOT.cer"
shell: "ln -s `realpath {input}` {output}"
"""
fh = open(snk, "w")
for nr, l in levels.items():
for n in l:
purge = "-z" if n.RightSide else ""
if nr == 0 or n.Left is None or n.Right is None:
jr = init_template % (n.Id, n.Id, n.Id, config["cls_mode"], "{input.left}", "{output}", purge)
fh.write(jr)
else:
jr = template % (n.Id, n.Left.Id, n.Right.Id, n.Id, config["cls_mode"], "{input.left}", "{input.right}", "{output}", purge)
fh.write(jr)
global ROOT
fh.write(link_template % ROOT)
fh.write("\nROOT = %d" % ROOT)
fh.flush()
fh.close()
def count_fastq_bases(fname, size=128000000):
fh = open(fname, "r")
count = 0
while True:
b = fh.read(size)
if not b:
break
count += b.count("A")
count += b.count("T")
count += b.count("G")
count += b.count("C")
count += b.count("U")
fh.close()
return count
def preprocess_reads(fq):
pc_opts = config["pychopper_opts"]
concat = config["concatenate"]
thr = config["cores"]
out_fq = "processed_reads/full_length_reads.fq"
if os.path.isdir("processed_reads"):
return out_fq
shell("mkdir -p processed_reads")
if concat:
print("Concatenating reads under directory: " + fq)
shell("find %s -regextype posix-extended -regex '.*\.(fastq|fq)$' -exec cat {{}} \\; > processed_reads/input_reads.fq" % fq)
else:
shell("ln -s `realpath %s` processed_reads/input_reads.fq" % fq)
if config["run_pychopper"]:
print("Running pychopper of fastq file: processed_reads/input_reads.fq")
shell("(cd processed_reads; cdna_classifier.py -t %d %s input_reads.fq full_length_reads.fq)" % (thr, pc_opts))
else:
shell("ln -s `realpath processed_reads/input_reads.fq` processed_reads/full_length_reads.fq")
return out_fq
ROOT = None
DYNAMIC_RULES="job_rules.snk"
if ((not os.path.isfile(os.path.join(WORKDIR,"sorted","sorted_reads.fastq"))) or (not os.path.isfile(os.path.join(SNAKEDIR, DYNAMIC_RULES)))):
print("Preprocessing read in fastq file:", in_fastq)
proc_fastq = preprocess_reads(in_fastq)
print("Counting records in input fastq:", proc_fastq)
nr_bases = count_fastq_bases(proc_fastq)
print("Bases in input: {} megabases".format(int(nr_bases/10**6)))
if config['batch_size'] < 0:
config['batch_size'] = int(nr_bases/1000/config["cores"])
print("Batch size is: {}".format(config['batch_size']))
init_cls_options = """ --batch-size {} --kmer-size {} --window-size {} --min-shared {} --min-qual {}\
--mapped-threshold {} --aligned-threshold {} --min-fraction {} --min-prob-no-hits {} -M {} -P {} -g {} -c {} -F {} """
init_cls_options = init_cls_options.format(config["batch_size"], config["kmer_size"], config["window_size"], config["min_shared"], config["min_qual"], \
config["mapped_threshold"], config["aligned_threshold"], config["min_fraction"], config["min_prob_no_hits"], config["batch_max_seq"], config["consensus_period"],
config["consensus_minimum"], config["consensus_maximum"], config["min_left_cls"])
shell("""
rm -fr clusters sorted
mkdir -p sorted; isONclust2 sort {} -v -o sorted {};
mkdir -p clusters;
""".format(init_cls_options, proc_fastq))
JOB_TREE = OrderedDict()
LEVELS = None
build_job_tree("sorted/batches")
generate_rules(LEVELS, "{}/job_rules.snk".format(SNAKEDIR))
include: DYNAMIC_RULES
rule all:
input: rules.link_root.output
output: directory("final_clusters")
shell:
""" isONclust2 dump -v -i sorted/sorted_reads_idx.cer -o final_clusters {input}; sync """