-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcube_from_wfn.py
executable file
·171 lines (140 loc) · 5.93 KB
/
cube_from_wfn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
import argparse
import time
import numpy as np
ang_2_bohr = 1.0 / 0.52917721067
hart_2_ev = 27.21138602
from mpi4py import MPI
import cp2k_spm_tools.cp2k_grid_orbitals as cgo
from cp2k_spm_tools import common
comm = MPI.COMM_WORLD
mpi_rank = comm.Get_rank()
mpi_size = comm.Get_size()
parser = argparse.ArgumentParser(description="Creates Gaussian cube files from cp2k .wfn file.")
parser.add_argument("--cp2k_input_file", metavar="FILENAME", required=True, help="CP2K input of the SCF calculation.")
parser.add_argument("--basis_set_file", metavar="FILENAME", required=True, help="File containing the used basis sets.")
parser.add_argument("--xyz_file", metavar="FILENAME", required=True, help=".xyz file containing the geometry.")
parser.add_argument(
"--wfn_file", metavar="FILENAME", required=True, help="cp2k restart file containing the wavefunction."
)
parser.add_argument("--output_dir", metavar="DIR", required=True, help="directory where to output the cubes.")
### -----------------------------------------------------------
parser.add_argument("--dx", type=float, metavar="DX", default=0.2, help="Spatial step for the grid (angstroms).")
parser.add_argument(
"--eval_cutoff",
type=float,
metavar="D",
default=14.0,
help=("Size of the region around the atom where each orbital is evaluated (only used for 'G' region)."),
)
parser.add_argument(
"--eval_region",
type=str,
nargs=6,
metavar="X",
required=False,
default=["G", "G", "G", "G", "G", "G"],
help=common.eval_region_description,
)
parser.add_argument(
"--pbc",
type=int,
nargs=3,
metavar="X",
required=False,
default=[1, 1, 1],
help="periodic boundary conditions in directions [x,y,z]. (1=on, 0=off)",
)
### -----------------------------------------------------------
parser.add_argument("--n_homo", type=int, metavar="N", default=0, help="Number of HOMO orbitals to export.")
parser.add_argument("--n_lumo", type=int, metavar="N", default=0, help="Number of LUMO orbitals to export.")
parser.add_argument("--orb_square", action="store_true", help=("Additionally generate the square (RHO) for each MO."))
### -----------------------------------------------------------
parser.add_argument(
"--charge_dens", action="store_true", help=("Calculate charge density (all occupied orbitals are evaluated).")
)
parser.add_argument(
"--charge_dens_artif_core",
action="store_true",
help=("Calculate charge density with 'fake' artificial core (all occ orbitals are evaluated)."),
)
parser.add_argument(
"--spin_dens", action="store_true", help=("Calculate spin density (all occupied orbitals are evaluated).")
)
### -----------------------------------------------------------
parser.add_argument("--do_not_center_atoms", action="store_true", help=("Center atoms to cell."))
### -----------------------------------------------------------
time0 = time.time()
### ------------------------------------------------------
### Parse args for only one rank to suppress duplicate stdio
### ------------------------------------------------------
args = None
args_success = False
try:
if mpi_rank == 0:
args = parser.parse_args()
args_success = True
finally:
args_success = comm.bcast(args_success, root=0)
if not args_success:
print(mpi_rank, "exiting")
exit(0)
args = comm.bcast(args, root=0)
output_dir = args.output_dir if args.output_dir[-1] == "/" else args.output_dir + "/"
### ------------------------------------------------------
### Evaluate orbitals on the real-space grid
### ------------------------------------------------------
n_homo = args.n_homo
n_lumo = args.n_lumo
n_homo_range = n_homo
if args.charge_dens or args.spin_dens:
n_homo_range = None
mol_grid_orb = cgo.Cp2kGridOrbitals(mpi_rank, mpi_size, comm, single_precision=False)
mol_grid_orb.read_cp2k_input(args.cp2k_input_file)
mol_grid_orb.read_xyz(args.xyz_file)
if not args.do_not_center_atoms:
mol_grid_orb.center_atoms_to_cell()
mol_grid_orb.read_basis_functions(args.basis_set_file)
mol_grid_orb.load_restart_wfn_file(args.wfn_file, n_occ=n_homo_range, n_virt=n_lumo)
eval_reg = common.parse_eval_region_input(args.eval_region, mol_grid_orb.ase_atoms, mol_grid_orb.cell)
mol_grid_orb.calc_morbs_in_region(
args.dx,
x_eval_region=eval_reg[0],
y_eval_region=eval_reg[1],
z_eval_region=eval_reg[2],
pbc=np.array(args.pbc, dtype=bool),
reserve_extrap=0.0,
eval_cutoff=args.eval_cutoff,
)
### ------------------------------------------------------
### Export the data
### ------------------------------------------------------
ase_atoms = mol_grid_orb.ase_atoms
origin = mol_grid_orb.origin
cell = mol_grid_orb.eval_cell * np.eye(3)
vol_elem = np.prod(mol_grid_orb.dv)
for imo in np.arange(n_homo + n_lumo):
i_rel_homo = imo - n_homo + 1
for ispin in range(mol_grid_orb.nspin):
if imo >= len(mol_grid_orb.cwf.global_morb_indexes[ispin]):
continue
global_index = mol_grid_orb.cwf.global_morb_indexes[ispin][imo]
if i_rel_homo < 0:
hl_label = "HOMO%+d" % i_rel_homo
elif i_rel_homo == 0:
hl_label = "HOMO"
elif i_rel_homo == 1:
hl_label = "LUMO"
else:
hl_label = "LUMO%+d" % (i_rel_homo - 1)
name = "S%d_%d_%s" % (ispin, global_index, hl_label)
mol_grid_orb.write_cube(output_dir + name + ".cube", i_rel_homo, spin=ispin)
if args.orb_square:
mol_grid_orb.write_cube(output_dir + name + "_sq.cube", i_rel_homo, spin=ispin, square=True)
if args.charge_dens:
mol_grid_orb.calculate_and_save_charge_density(output_dir + "charge_density.cube")
if args.charge_dens_artif_core:
mol_grid_orb.calculate_and_save_charge_density(output_dir + "charge_density_artif.cube", artif_core=True)
if args.spin_dens:
mol_grid_orb.calculate_and_save_spin_density(output_dir + "spin_density.cube")
print("R%d/%d: finished, total time: %.2fs" % (mpi_rank, mpi_size, (time.time() - time0)))