Skip to content

Commit 22e0d6d

Browse files
committed
reset par
1 parent 5242117 commit 22e0d6d

File tree

3 files changed

+11
-3
lines changed

3 files changed

+11
-3
lines changed

DESCRIPTION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Package: oneclust
22
Type: Package
33
Title: Maximum Homogeneity Clustering for Univariate Data
4-
Version: 0.2.0
4+
Version: 0.2.1
55
Authors@R: c(
66
person("Nan", "Xiao", email = "[email protected]", role = c("aut", "cre"),
77
comment = c(ORCID = "0000-0002-0250-5673")))

NEWS.md

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,9 @@
1+
# oneclust 0.2.1
2+
3+
## Improvements
4+
5+
- Reset graphical parameters after changing them in the vignette.
6+
17
# oneclust 0.2.0
28

39
## New Features

vignettes/oneclust.Rmd

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -118,10 +118,11 @@ The postal codes belong to the first five clusters have a higher probability
118118
probability (around 0.1) of getting label 1:
119119

120120
```{r}
121-
par(las = 1)
121+
op <- par(las = 1)
122122
plot(feature_tr, train$label, lty = 0, xlab = "Cluster", ylab = "Label")
123123
abline(h = 0.2, col = cud(1))
124124
abline(h = 0.1, col = cud(2))
125+
par(op)
125126
```
126127

127128
We can also verify that the number of the samples in the first five clusters
@@ -150,10 +151,11 @@ feature_te <- level_new[match(test$postcode, names(level_hist))] %>%
150151
Check if the recoded variable has the similar label pattern:
151152

152153
```{r}
153-
par(las = 1)
154+
op <- par(las = 1)
154155
plot(feature_te, test$label, lty = 0, xlab = "Cluster", ylab = "Label")
155156
abline(h = 0.2, col = cud(1))
156157
abline(h = 0.1, col = cud(2))
158+
par(op)
157159
```
158160

159161
```{r}

0 commit comments

Comments
 (0)