-
Notifications
You must be signed in to change notification settings - Fork 0
/
source.py
276 lines (231 loc) · 8.98 KB
/
source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import logging
import numpy as np
import time
from tqdm import tqdm
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, Subset
from torch.utils.data.distributed import DistributedSampler
from torchvision.datasets import ImageNet
import wandb
from classifier import Classifier
from image_list import ImageList
from utils import (
adjust_learning_rate,
concat_all_gather,
get_augmentation,
is_master,
per_class_accuracy,
remove_wrap_arounds,
save_checkpoint,
use_wandb,
AverageMeter,
ProgressMeter,
)
def get_source_optimizer(model, args):
if args.distributed:
model = model.module
backbone_params, extra_params = model.get_params()
if args.optim.name == "sgd":
optimizer = torch.optim.SGD(
[
{
"params": backbone_params,
"lr": args.optim.lr,
"momentum": args.optim.momentum,
"weight_decay": args.optim.weight_decay,
"nesterov": args.optim.nesterov,
},
{
"params": extra_params,
"lr": args.optim.lr * 10,
"momentum": args.optim.momentum,
"weight_decay": args.optim.weight_decay,
"nesterov": args.optim.nesterov,
},
]
)
else:
raise NotImplementedError(f"{args.optim.name} not implemented.")
for param_group in optimizer.param_groups:
param_group["lr0"] = param_group["lr"]
return optimizer
def train_source_domain(args):
logging.info(f"Start source training on {args.data.src_domain}...")
model = Classifier(args.model_src).to("cuda")
if args.distributed:
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = DistributedDataParallel(
model, device_ids=[args.gpu], find_unused_parameters=True
)
logging.info(f"1 - Created source model")
# transforms
train_transform = get_augmentation("plain")
val_transform = get_augmentation("test")
# datasets
if args.data.dataset == "imagenet-1k":
train_dataset = ImageNet(args.data.image_root, transform=train_transform)
val_dataset = ImageNet(
args.data.image_root, split="val", transform=val_transform
)
else:
label_file = os.path.join(
args.data.image_root, f"{args.data.src_domain}_list.txt"
)
train_dataset = ImageList(
args.data.image_root, label_file, transform=train_transform
)
val_dataset = ImageList(
args.data.image_root, label_file, transform=val_transform
)
assert len(train_dataset) == len(val_dataset)
# split the dataset with indices
indices = np.random.permutation(len(train_dataset))
num_train = int(len(train_dataset) * args.data.train_ratio)
train_dataset = Subset(train_dataset, indices[:num_train])
val_dataset = Subset(val_dataset, indices[num_train:])
logging.info(
f"Loaded {len(train_dataset)} samples for training "
+ f"and {len(val_dataset)} samples for validation",
)
# data loaders
train_sampler = DistributedSampler(train_dataset) if args.distributed else None
train_loader = DataLoader(
train_dataset,
batch_size=args.data.batch_size,
shuffle=(train_sampler is None),
sampler=train_sampler,
pin_memory=True,
num_workers=args.data.workers,
)
val_sampler = DistributedSampler(val_dataset) if args.distributed else None
val_loader = DataLoader(
val_dataset,
batch_size=args.data.batch_size,
sampler=val_sampler,
pin_memory=True,
num_workers=args.data.workers,
)
logging.info(f"2 - Created data loaders")
optimizer = get_source_optimizer(model, args)
args.learn.full_progress = args.learn.epochs * len(train_loader)
logging.info(f"3 - Created optimizer")
logging.info(f"Start training...")
best_acc = 0.0
for epoch in range(args.learn.start_epoch, args.learn.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
# train for one epoch
train_epoch(train_loader, model, optimizer, epoch, args)
# evaluate
accuracy = evaluate(val_loader, model, domain=args.data.src_domain, args=args)
if accuracy > best_acc and is_master(args):
best_acc = accuracy
filename = f"best_{args.data.src_domain}_{args.seed}.pth.tar"
save_path = os.path.join(args.log_dir, filename)
save_checkpoint(model, optimizer, epoch, save_path=save_path)
# evaluate on target before any adaptation
for t, tgt_domain in enumerate(args.data.target_domains):
if tgt_domain == args.data.src_domain:
continue
label_file = os.path.join(args.data.image_root, f"{tgt_domain}_list.txt")
tgt_dataset = ImageList(args.data.image_root, label_file, val_transform)
sampler = DistributedSampler(tgt_dataset) if args.distributed else None
tgt_loader = DataLoader(
tgt_dataset,
batch_size=args.data.batch_size,
sampler=sampler,
pin_memory=True,
num_workers=args.data.workers,
)
logging.info(f"Evaluate {args.data.src_domain} model on {tgt_domain}")
evaluate(
tgt_loader,
model,
domain=f"{args.data.src_domain}-{tgt_domain}",
args=args,
wandb_commit=(t == len(args.data.target_domains) - 1),
)
def train_epoch(train_loader, model, optimizer, epoch, args):
batch_time = AverageMeter("Time", ":6.3f")
loss = AverageMeter("Loss", ":.4f")
top1 = AverageMeter("Acc@1", ":6.2f")
progress = ProgressMeter(
len(train_loader), [batch_time, loss, top1], prefix="Epoch: [{}]".format(epoch),
)
# make sure to switch to train mode
model.train()
end = time.time()
for i, data in enumerate(train_loader):
images = data[0].cuda(args.gpu, non_blocking=True)
labels = data[1].cuda(args.gpu, non_blocking=True)
# per-step scheduler
step = i + epoch * len(train_loader)
adjust_learning_rate(optimizer, step, args)
logits = model(images)
loss_ce = smoothed_cross_entropy(
logits,
labels,
num_classes=args.model_src.num_classes,
epsilon=args.learn.epsilon,
)
# train acc measure (on one GPU only)
preds = logits.argmax(dim=1)
acc = (preds == labels).float().mean().detach() * 100.0
loss.update(loss_ce.item(), images.size(0))
top1.update(acc.item(), images.size(0))
if use_wandb(args):
wandb.log({"Loss": loss_ce.item()}, commit=(i != len(train_loader)))
# perform one gradient step
optimizer.zero_grad()
loss_ce.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.learn.print_freq == 0:
progress.display(i)
def evaluate(val_loader, model, domain, args, wandb_commit=True):
model.eval()
logging.info(f"Evaluating...")
gt_labels, all_preds = [], []
with torch.no_grad():
iterator = tqdm(val_loader) if is_master(args) else val_loader
for data in iterator:
images = data[0].cuda(args.gpu, non_blocking=True)
labels = data[1]
logits = model(images)
preds = logits.argmax(dim=1).cpu()
gt_labels.append(labels)
all_preds.append(preds)
gt_labels = torch.cat(gt_labels)
all_preds = torch.cat(all_preds)
if args.distributed:
gt_labels = concat_all_gather(gt_labels.cuda())
all_preds = concat_all_gather(all_preds.cuda())
ranks = len(val_loader.dataset) % dist.get_world_size()
gt_labels = remove_wrap_arounds(gt_labels, ranks).cpu()
all_preds = remove_wrap_arounds(all_preds, ranks).cpu()
accuracy = (all_preds == gt_labels).float().mean() * 100.0
wandb_dict = {f"{domain} Acc": accuracy}
logging.info(f"Accuracy: {accuracy:.2f}")
if args.data.dataset == "VISDA-C":
acc_per_class = per_class_accuracy(
y_true=gt_labels.numpy(), y_pred=all_preds.numpy()
)
wandb_dict[f"{domain} Avg"] = acc_per_class.mean()
wandb_dict[f"{domain} Per-class"] = acc_per_class
if use_wandb(args):
wandb.log(wandb_dict, commit=wandb_commit)
return accuracy
def smoothed_cross_entropy(logits, labels, num_classes, epsilon=0):
log_probs = F.log_softmax(logits, dim=1)
with torch.no_grad():
targets = torch.zeros_like(log_probs).scatter_(1, labels.unsqueeze(1), 1)
targets = (1 - epsilon) * targets + epsilon / num_classes
loss = (-targets * log_probs).sum(dim=1).mean()
return loss