-
Notifications
You must be signed in to change notification settings - Fork 122
/
Cutting Sticks.cpp
69 lines (60 loc) · 2.22 KB
/
Cutting Sticks.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
// Given a length x and n cutting points, find the minimum cost perform all n cuts
// Cost of a cut is equal to the length of the current stick
// A variation of Matrix Chain Multiplication DP Problem
// Time complexity: O(n^3), can be reduced to O(n^2) with Knuth Optimization
// Problem link: https://vjudge.net/problem/UVA-10003
#include <bits/stdc++.h>
using namespace std;
#define ar array
#define ll long long
const int MAX_N = 50 + 5;
const int MOD = 1e9 + 7;
const int INF = 1e9;
const ll LINF = 1e18;
int opt[MAX_N][MAX_N];
void solve() {
while (true) {
int x; cin >> x;
if (!x) return;
int n; cin >> n;
int arr[n + 2];
// adding the beginning point and the ending point
arr[0] = 0; arr[n + 1] = x;
for (int i = 1; i <= n; i++) cin >> arr[i];
vector<vector<int>> dp(n + 2, vector<int>(n + 2, INF));
for (int i = 0; i < n + 1; i++) {
dp[i][i + 1] = 0;
opt[i][i + 1] = i;
}
// range dp
for (int i = n + 1; i >= 0; i--) {
for (int j = i; j <= n + 1; j++) {
for (int k = i + 1; k < j; k++) {
if (dp[i][j] > dp[i][k] + dp[k][j] + arr[j] - arr[i]) {
dp[i][j] = dp[i][k] + dp[k][j] + arr[j] - arr[i];
}
}
// Knuth Optimization (only need to change 2 lines)
// Condition: dp[i][j] = min{i < k < j}(dp[i][k] + dp[k][j]) + C[i][j]
// for (int k = opt[i][j - 1]; k <= opt[i + 1][j]; k++) {
// if (dp[i][j] > dp[i][k] + dp[k][j] + arr[j] - arr[i]) {
// dp[i][j] = dp[i][k] + dp[k][j] + arr[j] - arr[i];
// opt[i][j] = k;
// }
// }
}
}
cout << "The minimum cutting is " << dp[0][n + 1] << ".\n";
}
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
int tc; tc = 1;
for (int t = 1; t <= tc; t++) {
// cout << "Case #" << t << ": ";
solve();
}
}