-
Notifications
You must be signed in to change notification settings - Fork 0
/
segmentation2face.py
47 lines (34 loc) · 1.51 KB
/
segmentation2face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy ([email protected])
'''
import os
import cv2
import glob
import time
import numpy as np
from PIL import Image
import __init_paths
from face_model.face_gan import FaceGAN
class Segmentation2Face(object):
def __init__(self, base_dir='./', size=1024, model=None, channel_multiplier=2, narrow=1, is_norm=True):
self.facegan = FaceGAN(base_dir, size, model, channel_multiplier, narrow, is_norm)
# make sure the face image is well aligned. Please refer to face_enhancement.py
def process(self, segf):
# from segmentations to faces
out = self.facegan.process(segf)
return out
if __name__=='__main__':
model = {'name':'GPEN-Seg2face-512', 'size':512}
indir = 'examples/segs'
outdir = 'examples/outs-seg2face'
os.makedirs(outdir, exist_ok=True)
seg2face = Segmentation2Face(size=model['size'], model=model['name'], channel_multiplier=2, is_norm=False)
files = sorted(glob.glob(os.path.join(indir, '*.*g')))
for n, file in enumerate(files[:]):
filename = os.path.basename(file)
segf = cv2.imread(file, cv2.IMREAD_COLOR)
realf = seg2face.process(segf)
segf = cv2.resize(segf, realf.shape[:2])
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'.jpg'), np.hstack((segf, realf)))
if n%10==0: print(n, file)