-
Notifications
You must be signed in to change notification settings - Fork 645
/
train_am_vocoder_joint.py
486 lines (387 loc) · 19.2 KB
/
train_am_vocoder_joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import argparse, time
import sys
import os
import torch, glob, itertools
from yacs import config as CONFIG
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from plot_image import plot_image_sambert
from mel_process import mel_spectrogram_torch
from models.prompt_tts_modified.jets import JETSGenerator, get_segments
from models.hifigan.pretrained_discriminator import Discriminator
from models.hifigan.models import discriminator_loss, generator_loss, feature_loss
from models.prompt_tts_modified.loss import TTSLoss
from models.prompt_tts_modified.simbert import StyleEncoder
from models.prompt_tts_modified.prompt_dataset import Dataset_PromptTTS as Dataset_PromptTTS_JETS
from torch.utils.data import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import warnings
warnings.filterwarnings('ignore')
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_writer(output_directory):
logging_path=f'{output_directory}' + "/log"
if not os.path.exists(logging_path):
os.makedirs(logging_path, exist_ok=True)
writer = SummaryWriter(logging_path)
return writer
def save_checkpoint(filepath, obj):
print("Saving checkpoint to {}".format(filepath))
torch.save(obj, filepath)
print("Complete.")
def scan_checkpoint(cp_dir, prefix):
pattern = os.path.join(cp_dir, prefix + '????????')
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return None
return sorted(cp_list)[-1]
def load_checkpoint(filepath, device):
assert os.path.isfile(filepath)
print("Loading '{}'".format(filepath))
checkpoint_dict = torch.load(filepath, map_location=device)
print("Complete.")
return checkpoint_dict
def validate(args, generator, val_loader, iteration, writer, config, device, loss_fn):
generator.eval()
with torch.no_grad():
dec_mel_loss_list = []
postnet_mel_loss_list = []
dur_loss_list = []
pitch_loss_list = []
energy_loss_list = []
forwardsum_loss_list = []
bin_loss_list = []
for i, batch in enumerate(val_loader):
batch = {key: value.to(device, non_blocking=True) for key, value in batch.items()}
phoneme_id = batch["phoneme_id"]
phoneme_lens = batch["phoneme_lens"]
mel = batch["mel"]
mel_lens = batch["mel_lens"]
speaker = batch["speaker"]
style_embedding = batch["style_embedding"]
content_embedding = batch["content_embedding"]
pitch = batch["pitch"]
energy = batch["energy"]
wav = batch["wav"]
output = generator(
inputs_ling=phoneme_id,
inputs_style_embedding=style_embedding,
inputs_content_embedding=content_embedding,
input_lengths=phoneme_lens,
inputs_speaker=speaker,
output_lengths=mel_lens,
mel_targets=mel,
pitch_targets=pitch,
energy_targets=energy,
cut_flag=False
)
y_hat_mel = mel_spectrogram_torch(
output["wav_predictions"][:,:,:wav.size(1)].squeeze(1),
config.filter_length,
config.n_mel_channels,
config.sampling_rate,
config.hop_length,
config.win_length,
config.mel_fmin,
config.mel_fmax
)
y_mel = mel_spectrogram_torch(
wav.squeeze(1),
config.filter_length,
config.n_mel_channels,
config.sampling_rate,
config.hop_length,
config.win_length,
config.mel_fmin,
config.mel_fmax
)
output["dec_outputs"] = y_hat_mel
output["mel_targets"] = y_mel.transpose(1,2)
losses = loss_fn(output)
dec_mel_loss_list.append(losses["dec_mel_loss"].item())
dur_loss_list.append(losses["dur_loss"].item())
pitch_loss_list.append(losses["pitch_loss"].item())
energy_loss_list.append(losses["energy_loss"].item())
forwardsum_loss_list.append(losses["forwardsum_loss"].item())
bin_loss_list.append(losses["bin_loss"].item())
dec_mel_loss = sum(dec_mel_loss_list)/len(dec_mel_loss_list)
dur_loss = sum(dur_loss_list)/len(dur_loss_list)
pitch_loss = sum(pitch_loss_list)/len(pitch_loss_list)
energy_loss = sum(energy_loss_list)/len(energy_loss_list)
forwardsum_loss = sum(forwardsum_loss_list)/len(forwardsum_loss_list)
bin_loss = sum(bin_loss_list)/len(bin_loss_list)
message = f'global_step={iteration}, val_dec_mel_loss={dec_mel_loss:0.4f}, val_dur_loss={dur_loss:0.4f}, val_pitch_loss={pitch_loss:0.4f}, val_energy_loss={energy_loss:0.4f}, val_forwardsum_loss={forwardsum_loss:0.4f}, bin_loss={bin_loss:0.4f}, '
print(message)
with open(os.path.join(f'{config.output_directory}' + "/log", "train_log.txt"), "a") as f:
f.write(message + "\n")
writer.add_scalar('val_dec_mel_loss', dec_mel_loss, global_step=iteration)
writer.add_scalar('val_dur_loss', dur_loss, global_step=iteration)
writer.add_scalar('val_pitch_loss', pitch_loss, global_step=iteration)
writer.add_scalar('val_energy_loss', energy_loss, global_step=iteration)
writer.add_scalar('val_forwardsum_loss', forwardsum_loss, global_step=iteration)
writer.add_scalar('val_bin_loss', bin_loss, global_step=iteration)
mel_plots = plot_image_sambert(mel,
output["dec_outputs"],
mel_lens,
phoneme_lens,
save_dir=f'{config.output_directory}',
global_step=iteration,
name='val')
writer.add_figure('Validation mel_plots', mel_plots, global_step=iteration)
with torch.no_grad():
T=phoneme_lens[-1]
output_infer = generator(
inputs_ling=phoneme_id[-1,:T].unsqueeze(0),
inputs_style_embedding=style_embedding[-1].unsqueeze(0),
input_lengths=phoneme_lens[-1].unsqueeze(0),
inputs_content_embedding=content_embedding[-1].unsqueeze(0),
inputs_speaker=speaker[-1].unsqueeze(0),
)
y_hat_mel = mel_spectrogram_torch(
output_infer["wav_predictions"].squeeze(1),
config.filter_length,
config.n_mel_channels,
config.sampling_rate,
config.hop_length,
config.win_length,
config.mel_fmin,
config.mel_fmax
)
writer.add_audio('generated_audio', output_infer["wav_predictions"].squeeze(1), iteration, 16_000)
mel_plots_infer = plot_image_sambert(mel,
y_hat_mel,
mel_lens,
phoneme_lens,
save_dir=f'{config.output_directory}',
global_step=iteration,
name='infer')
writer.add_figure('Inference mel_plots', mel_plots_infer, global_step=iteration)
generator.train()
return
def train(args, config):
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
rank = int(os.environ["LOCAL_RANK"])
torch.distributed.init_process_group(backend="nccl", init_method="env://", world_size=args.n_gpus, rank=rank)
torch.cuda.set_device(rank)
device = torch.device(f'cuda:{rank}')
if rank==0:
print("run!")
writer = get_writer(config.output_directory)
print("device: ", rank)
style_encoder = StyleEncoder(config)
model_CKPT = torch.load(config.style_encoder_ckpt, map_location="cpu")
model_ckpt = {}
for key, value in model_CKPT['model'].items():
new_key = key[7:]
model_ckpt[new_key] = value
style_encoder.load_state_dict(model_ckpt, strict=False)
train_dataset = Dataset_PromptTTS_JETS(config.train_data_path, config, style_encoder)
data_sampler = DistributedSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(
train_dataset,
num_workers=8,
shuffle=False,
batch_size=config.batch_size,
collate_fn=train_dataset.TextMelCollate,
sampler = data_sampler,
)
if rank == 0:
valid_dataset = Dataset_PromptTTS_JETS(config.valid_data_path, config, style_encoder)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
num_workers=1,
batch_size=config.batch_size,
collate_fn=train_dataset.TextMelCollate,
pin_memory=True,
)
with open(config.model_config_path, 'r') as fin:
conf = CONFIG.load_cfg(fin)
conf.n_vocab = config.n_symbols
conf.n_speaker = config.speaker_n_labels
iteration=0
generator = JETSGenerator(conf).to(device)
discriminator = Discriminator(conf).to(device)
os.makedirs(f'{config.output_directory}' + '/ckpt', exist_ok=True)
cp_g = scan_checkpoint(f'{config.output_directory}' + '/ckpt', 'g_')
cp_do = scan_checkpoint(f'{config.output_directory}' + '/ckpt', 'do_')
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g['generator'])
discriminator.load_state_dict(state_dict_do['discriminator'])
iteration = state_dict_do['steps'] + 1
last_epoch = state_dict_do['epoch']
if args.load_pretrained_model:
ckpt=torch.load(f'{config.output_directory}/ckpt/pretrained_generator')
generator.load_state_dict(ckpt['generator'])
ckpt=torch.load(f'{config.output_directory}/ckpt/pretrained_discriminator')
discriminator.load_state_dict(ckpt['discriminator'])
state_dict_do = None
last_epoch = -1
iteration=0
print()
generator = DDP(generator, device_ids=[rank]).to(device)
discriminator = DDP(discriminator, device_ids=[rank]).to(device)
optim_g = torch.optim.Adam(generator.parameters(), conf.optimizer.lr, betas=conf.optimizer.betas)
optim_d = torch.optim.Adam(discriminator.parameters(),
conf.optimizer.lr, betas=conf.optimizer.betas)
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do['optim_g'])
optim_d.load_state_dict(state_dict_do['optim_d'])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=conf.scheduler.gamma, last_epoch=last_epoch)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=conf.scheduler.gamma, last_epoch=last_epoch)
loss_fn = TTSLoss()
if rank == 0:
print("The number of parameters in the model: %0.2f M"%(count_parameters(generator)/1000000.0))
print(f"Training Start!!! ({config.output_directory})")
generator.train()
discriminator.train()
for epoch in range(max(0, last_epoch), 5_000_000):
if rank == 0:
for param_group in optim_g.param_groups:
print("Current learning rate: " + str(param_group["lr"]))
print("Epoch: {}".format(epoch+1))
data_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
if rank == 0:
start_b = time.time()
batch = {key: value.to(device, non_blocking=True) for key, value in batch.items()}
phoneme_id = batch["phoneme_id"]
phoneme_lens = batch["phoneme_lens"]
mel = batch["mel"]
mel_lens = batch["mel_lens"]
speaker = batch["speaker"]
style_embedding = batch["style_embedding"]
content_embedding = batch["content_embedding"]
pitch = batch["pitch"]
energy = batch["energy"]
wav = batch["wav"]
output = generator(
inputs_ling=phoneme_id,
inputs_style_embedding=style_embedding,
inputs_content_embedding=content_embedding,
input_lengths=phoneme_lens,
inputs_speaker=speaker,
output_lengths=mel_lens,
mel_targets=mel,
pitch_targets=pitch,
energy_targets=energy,
)
y_hat_mel = mel_spectrogram_torch(
output["wav_predictions"].squeeze(1),
config.filter_length,
config.n_mel_channels,
config.sampling_rate,
config.hop_length,
config.win_length,
config.mel_fmin,
config.mel_fmax
)
wav = get_segments(
x=wav.unsqueeze(1),
start_idxs=output["z_start_idxs"] * (generator.module.upsample_factor if hasattr(generator, "module") else generator.upsample_factor),
segment_size=output["segment_size"] * (generator.module.upsample_factor if hasattr(generator, "module") else generator.upsample_factor),
)
y_mel = mel_spectrogram_torch(
wav.squeeze(1),
config.filter_length,
config.n_mel_channels,
config.sampling_rate,
config.hop_length,
config.win_length,
config.mel_fmin,
config.mel_fmax
)
output["dec_outputs"] = y_hat_mel
output["mel_targets"] = y_mel.transpose(1,2)
########################################## Discriminator ##########################################
optim_d.zero_grad()
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = discriminator(wav, output["wav_predictions"].detach())
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_all = loss_disc_s + loss_disc_f
loss_disc_all.backward()
optim_d.step()
########################################## Generator ##########################################
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = discriminator(wav, output["wav_predictions"])
optim_g.zero_grad()
loss = loss_fn(output)
loss_mel = F.l1_loss(y_mel, y_hat_mel)
loss["dec_mel_loss"]=loss_mel
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
dec_mel_loss = loss["dec_mel_loss"] * 45
dur_loss = loss["dur_loss"] * 1
pitch_loss = loss["pitch_loss"] * 1
energy_loss = loss["energy_loss"] * 1
forwardsum_loss = loss["forwardsum_loss"] * 2
bin_loss = loss["bin_loss"] * 2
loss_gen = (loss_gen_f + loss_gen_s) * 1
loss_fm = (loss_fm_f + loss_fm_s)
loss_gen_all = loss_gen + loss_fm + \
dec_mel_loss + dur_loss + \
pitch_loss + energy_loss + \
forwardsum_loss + bin_loss
loss_gen_all.backward()
optim_g.step()
iteration += 1
if rank==0:
writer.add_scalar('train_loss_fm', loss_fm, global_step=iteration)
writer.add_scalar('train_loss_gen', loss_gen, global_step=iteration)
writer.add_scalar('train_dec_mel_loss', dec_mel_loss, global_step=iteration)
writer.add_scalar('train_dur_loss', dur_loss, global_step=iteration)
writer.add_scalar('train_pitch_loss', pitch_loss, global_step=iteration)
writer.add_scalar('train_energy_loss', energy_loss, global_step=iteration)
writer.add_scalar('train_forwardsum_loss', forwardsum_loss, global_step=iteration)
writer.add_scalar('train_bin_loss', bin_loss, global_step=iteration)
message = f'global_step={iteration}, train_dec_mel_loss={dec_mel_loss:0.4f}, train_dur_loss={dur_loss:0.4f}, train_pitch_loss={pitch_loss:0.4f}, train_energy_loss={energy_loss:0.4f}, train_forwardsum_loss={forwardsum_loss:0.4f}, bin_loss={bin_loss:0.4f}, train_loss_fm={loss_fm:0.4f}, train_loss_gen={loss_gen:0.4f}, s/b={time.time() - start_b:4.3f}'
if iteration % (config.iters_per_validation) == 0:
validate(args, generator, valid_loader, iteration, writer, config, device, loss_fn)
print(message)
with open(os.path.join(f'{config.output_directory}' + "/log", "train_log.txt"), "a") as f:
f.write(message + "\n")
elif iteration % (config.iters_per_validation//10) == 0:
print(message)
with open(os.path.join(f'{config.output_directory}' + "/log", "train_log.txt"), "a") as f:
f.write(message + "\n")
if iteration % (config.iters_per_checkpoint) == 0:
checkpoint_path = "{}/g_{:08d}".format(f'{config.output_directory}' + '/ckpt', iteration)
save_checkpoint(checkpoint_path, {'generator': (generator.module if hasattr(generator, 'module') else generator).state_dict()})
checkpoint_path = "{}/do_{:08d}".format(f'{config.output_directory}' + '/ckpt', iteration)
save_checkpoint(checkpoint_path,
{'discriminator': (discriminator.module if hasattr(discriminator, 'module')
else discriminator).state_dict(),
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': iteration,
'epoch': epoch})
if iteration == (config.train_steps):
writer.close()
print("TRAINING DONE!")
break
scheduler_g.step()
scheduler_d.step()
def main():
p = argparse.ArgumentParser()
p.add_argument("-c", "--config_folder", type=str, required=True)
p.add_argument("--checkpoint", type=str, default="")
p.add_argument("--load_pretrained_model", default=False)
args = p.parse_args()
##################################################
sys.path.append(args.config_folder)
from config import Config
config = Config()
##################################################
n_gpus = torch.cuda.device_count()
args.n_gpus=n_gpus
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
# os.environ[
# "TORCH_DISTRIBUTED_DEBUG"
# ] = "DETAIL"
train(args, config)
if __name__ == '__main__':
main()