-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathframework.py
259 lines (220 loc) · 10.2 KB
/
framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import tensorflow as tf
import time
import tqdm
import pdb
import copy
class TrainFramework(object):
def __init__(self, params):
self.params = params
self.save_params = params['save_params']
self.load_params = params['load_params']
self.train_params = params['train_params']
self.model_params = params['model_params']
self.loss_params = params['loss_params']
self.validation_params = params['validation_params']
# Set cache directory
self.cache_dir = self.save_params['cache_dir']
os.system('mkdir -p %s' % self.cache_dir)
self.log_file_path = os.path.join(self.cache_dir, 'log.txt')
self.val_log_file_path = os.path.join(self.cache_dir, 'val_log.txt')
self.load_from_curr_exp = tf.train.latest_checkpoint(self.cache_dir)
if not self.load_from_curr_exp:
self.log_writer = open(self.log_file_path, 'w')
self.val_log_writer = open(self.val_log_file_path, 'w')
else:
self.log_writer = open(self.log_file_path, 'a+')
self.val_log_writer = open(self.val_log_file_path, 'a+')
def build_inputs(self):
data_params = self.train_params['data_params']
func = data_params.pop('func')
self.inputs = func(**data_params)
def build_network(self, inputs, train):
model_params = self.model_params
func = model_params.pop('func')
outputs, _ = func(
inputs=inputs,
train=train,
**model_params)
model_params['func'] = func
if 'trainable_scopes' in model_params:
trainable_scopes = model_params['trainable_scopes']
all_train_ref = tf.get_collection_ref(
tf.GraphKeys.TRAINABLE_VARIABLES)
cp_all_train_ref = copy.copy(all_train_ref)
for each_v in cp_all_train_ref:
should_be_trainable = False
for each_trainable_scope in trainable_scopes:
if each_v.op.name.startswith(each_trainable_scope):
should_be_trainable = True
if not should_be_trainable:
all_train_ref.remove(each_v)
return outputs
def build_train_op(self):
loss_params = self.loss_params
input_targets = [self.inputs[key] \
for key in loss_params['pred_targets']]
func = loss_params['loss_func']
self.loss_retval = func(
self.outputs,
*input_targets,
**loss_params.get('loss_func_kwargs', {}))
self.loss_retval = loss_params['agg_func'](
self.loss_retval,
**loss_params.get('agg_func_kwargs', {}))
self.global_step = tf.get_variable(
'global_step', [],
dtype=tf.int64, trainable=False,
initializer=tf.constant_initializer(0))
lr_rate_params = self.params['learning_rate_params']
func = lr_rate_params.pop('func')
learning_rate = func(self.global_step, **lr_rate_params)
self.learning_rate = learning_rate
opt_params = self.params['optimizer_params']
func = opt_params.pop('optimizer')
opt = func(learning_rate=learning_rate, **opt_params)
with tf.control_dependencies(
tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
self.train_op = opt.minimize(
self.loss_retval,
global_step=self.global_step)
def build_train_targets(self):
extra_targets_params = self.train_params['targets']
func = extra_targets_params.pop('func')
train_targets = func(self.inputs, self.outputs, **extra_targets_params)
train_targets['train_op'] = self.train_op
train_targets['loss'] = self.loss_retval
train_targets['learning_rate'] = self.learning_rate
self.train_targets = train_targets
def build_sess_and_saver(self):
gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
gpu_options=gpu_options,
))
self.sess = sess
self.saver = tf.train.Saver()
def load_from_ckpt(self, ckpt_path):
print('Restore from %s' % ckpt_path)
self.saver.restore(self.sess, ckpt_path)
def init_and_restore(self):
init_op_global = tf.global_variables_initializer()
self.sess.run(init_op_global)
init_op_local = tf.local_variables_initializer()
self.sess.run(init_op_local)
if self.load_from_curr_exp:
self.load_from_ckpt(self.load_from_curr_exp)
else:
split_cache_path = self.cache_dir.split('/')
split_cache_path[-1] = self.load_params['exp_id']
split_cache_path[-2] = self.load_params['collname']
split_cache_path[-3] = self.load_params['dbname']
load_dir = '/'.join(split_cache_path)
if self.load_params['query']:
ckpt_path = os.path.join(
load_dir,
'model.ckpt-%i' % self.load_params['query']['step'])
else:
ckpt_path = tf.train.latest_checkpoint(load_dir)
if ckpt_path:
print('Restore from %s' % ckpt_path)
#self.load_from_ckpt(ckpt_path)
reader = tf.train.NewCheckpointReader(ckpt_path)
saved_var_shapes = reader.get_variable_to_shape_map()
all_vars = tf.global_variables()
all_var_list = {v.op.name: v for v in all_vars}
filtered_var_list = {}
for name, var in all_var_list.items():
if name in saved_var_shapes:
curr_shape = var.get_shape().as_list()
saved_shape = saved_var_shapes[name]
if (curr_shape == saved_shape):
filtered_var_list[name] = var
else:
print('Shape mismatch for %s: ' % name \
+ str(curr_shape) \
+ str(saved_shape))
_load_saver = tf.train.Saver(var_list=filtered_var_list)
_load_saver.restore(self.sess, ckpt_path)
def run_each_validation(self, val_key):
agg_res = None
num_steps = self.validation_params[val_key]['num_steps']
for _step in tqdm.trange(num_steps, desc=val_key):
res = self.sess.run(self.all_val_targets[val_key])
online_func = self.validation_params[val_key]['online_agg_func']
agg_res = online_func(agg_res, res, _step)
agg_func = self.validation_params[val_key]['agg_func']
val_result = agg_func(agg_res)
return val_result
def run_train_loop(self):
start_step = self.sess.run(self.global_step)
train_loop = self.train_params.get('train_loop', None)
for curr_step in xrange(start_step, self.train_params['num_steps']+1):
self.start_time = time.time()
if train_loop is None:
train_res = self.sess.run(self.train_targets)
else:
train_res = train_loop['func'](self.sess, self.train_targets)
duration = time.time() - self.start_time
message = 'Step {} ({:.0f} ms) -- '\
.format(curr_step, 1000 * duration)
rep_msg = ['{}: {:.4f}'.format(k, v) \
for k, v in train_res.items()
if k != 'train_op']
message += ', '.join(rep_msg)
print(message)
if curr_step % self.save_params['cache_filters_freq'] == 0 \
and curr_step > 0:
print('Saving model...')
self.saver.save(
self.sess,
os.path.join(
self.cache_dir,
'model.ckpt'),
global_step=curr_step)
self.log_writer.write(message + '\n')
if curr_step % self.save_params['save_metrics_freq'] == 0:
self.log_writer.close()
self.log_writer = open(self.log_file_path, 'a+')
if curr_step % self.save_params['save_valid_freq'] == 0:
for each_val_key in self.validation_params:
val_result = self.run_each_validation(each_val_key)
self.val_log_writer.write(
'%s: %s\n' % (each_val_key, str(val_result)))
print(val_result)
self.val_log_writer.close()
self.val_log_writer = open(self.val_log_file_path, 'a+')
def build_train(self):
self.build_inputs()
self.outputs = self.build_network(self.inputs, True)
self.build_train_op()
self.build_train_targets()
def build_val_inputs(self, val_key):
data_params = self.validation_params[val_key]['data_params']
func = data_params.pop('func')
val_inputs = func(**data_params)
return val_inputs
def build_val_network(self, val_key, val_inputs):
with tf.name_scope('validation/' + val_key):
val_outputs = self.build_network(val_inputs, False)
return val_outputs
def build_val_targets(self, val_key, val_inputs, val_outputs):
target_params = self.validation_params[val_key]['targets']
func = target_params.pop('func')
val_targets = func(val_inputs, val_outputs, **target_params)
return val_targets
def build_val(self):
tf.get_variable_scope().reuse_variables()
self.all_val_targets = {}
for each_val_key in self.validation_params:
val_inputs = self.build_val_inputs(each_val_key)
val_outputs = self.build_val_network(each_val_key, val_inputs)
val_targets = self.build_val_targets(
each_val_key, val_inputs, val_outputs)
self.all_val_targets[each_val_key] = val_targets
def train(self):
self.build_train()
self.build_val()
self.build_sess_and_saver()
self.init_and_restore()
self.run_train_loop()