-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput.go
61 lines (53 loc) · 1.27 KB
/
input.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
package channn
import (
// "fmt"
"math/rand"
"sync"
)
func MakeInput() *Input {
return &Input{
OutWeights: make(map[*chan float64]float64),
Control: make(chan *ControlMessage),
mutex: &sync.Mutex{},
nType: INPUT_TYPE,
}
}
type Input struct {
OutWeights map[*chan float64]float64
Control chan *ControlMessage
mutex *sync.Mutex
nType NeuronType
}
// func (i Input) GetType() NeuronType {
// return i.nType
// }
// addOutput adds a pointer to the input and set a random weight.
func (i *Input) addOutput(c *chan float64) {
i.mutex.Lock()
i.OutWeights[c] = rand.Float64()
i.mutex.Unlock()
}
func (i *Input) ConnectNeurons(next ChanNeuron) {
// Add weight and pointer to the next neuron's input.
inChanPtr := next.GetInChanPtr()
i.addOutput(inChanPtr)
// Send message to increment the input.
msg := &ControlMessage{
Id: INCREMENT_INPUT,
}
next.ReceiveControlMsg(msg)
}
// In sends the input value to the next layer of neurons after
// multiplying it by the corresponding weight.
func (i *Input) In(val float64) {
for nextChannel, weight := range i.OutWeights {
*nextChannel <- val * weight
}
}
func (i *Input) ResetAllWeights(val float64) {
i.mutex.Lock()
for k, _ := range i.OutWeights {
i.OutWeights[k] = val
}
i.mutex.Unlock()
}