diff --git a/tests/unit/test_peak_fit_engine.py b/tests/unit/test_peak_fit_engine.py index 11b8b4e60..f368a83e1 100644 --- a/tests/unit/test_peak_fit_engine.py +++ b/tests/unit/test_peak_fit_engine.py @@ -4,8 +4,10 @@ from pyrs.core.workspaces import HidraWorkspace from pyrs.core.peak_profile_utility import pseudo_voigt, PeakShape, BackgroundFunction from pyrs.core.peak_profile_utility import Gaussian, PseudoVoigt -import pytest +import pytest, os from matplotlib import pyplot as plt +from collections import namedtuple +from pyrs.core import pyrscore def generate_test_gaussian(vec_x, peak_center_list, peak_range_list, peak_height_list): @@ -697,6 +699,79 @@ def test_calculate_effective_parameters_pv(): return +# Named tuple for peak information +PeakInfo = namedtuple('PeakInfo', 'center left_bound right_bound tag') + + +@pytest.mark.parametrize('target_values', [{'Intensity': [0.4, 0.3], 'peak_center': [91, 95], 'FWHM': [7.76, 7.76], + 'background_A0': [-0.04673, 0.427809], 'background_A1': [0.007, -0.003]}]) +def test_pseudovoigt_HB2B_1060(target_values): + """This is a test of Pseudovoigt peak fitting for HB2B 1060. + + Data are from the real HB2B data previously reported problematic + + Returns + ------- + + """ + # Define HiDRA project file name and skip test if it does not exist (on Travis) + + project_file_name = 'tests/data/HB2B_1060_first3_subruns.h5' + + if not os.path.exists(project_file_name): + pytest.skip('{} does not exist on Travis'.format(project_file_name)) + + # Create calibration control + controller = pyrscore.PyRsCore() + + # Load project file to HidraWorkspace + project_name = 'HB2B_1060 Peaks' + hd_ws = controller.load_hidra_project(project_file_name, project_name=project_name, load_detector_counts=False, + load_diffraction=True) + + peak_type = 'PseudoVoigt' + # Set peak fitting engine + # create a controller from factory + fit_engine = PeakFitEngineFactory.getInstance(hd_ws, peak_function_name=peak_type, + background_function_name='Linear') + + # Fit peak @ left and right + peak_info_left = PeakInfo(91.7, 87., 93., 'Left Peak') + peak_info_right = PeakInfo(95.8, 93.5, 98.5, 'Right Peak') + + fit_result = fit_engine.fit_multiple_peaks(peak_tags=[peak_info_left.tag, peak_info_right.tag], + x_mins=[peak_info_left.left_bound, peak_info_right.left_bound], + x_maxs=[peak_info_left.right_bound, peak_info_right.right_bound]) + + assert len(fit_result.peakcollections) == 2, 'two PeakCollection' + assert fit_result.fitted + assert fit_result.difference + + # peak 'Left' + param_values_lp, param_errors_lp = fit_result.peakcollections[0].get_native_params() + + # peak 'Right' + param_values_rp, param_errors_rp = fit_result.peakcollections[1].get_native_params() + + assert param_values_lp.size == 3, '3 subruns' + assert len(param_values_lp.dtype.names) == 6, '6 effective parameters' + + assert param_values_rp.size == 3, '3 subruns' + assert len(param_values_rp.dtype.names) == 6, '6 effective parameters' + + np.testing.assert_allclose(param_values_lp['Intensity'], target_values['Intensity'][0], rtol=1.) + np.testing.assert_allclose(param_values_lp['PeakCentre'], target_values['peak_center'][0], rtol=1.) + np.testing.assert_allclose(param_values_lp['FWHM'], target_values['FWHM'][0], rtol=1.) + np.testing.assert_allclose(param_values_lp['A0'], target_values['background_A0'][0], rtol=1.) + np.testing.assert_allclose(param_values_lp['A1'], target_values['background_A1'][0], rtol=1.) + + np.testing.assert_allclose(param_values_rp['Intensity'], target_values['Intensity'][1], rtol=1.) + np.testing.assert_allclose(param_values_rp['PeakCentre'], target_values['peak_center'][1], rtol=1.) + np.testing.assert_allclose(param_values_rp['FWHM'], target_values['FWHM'][1], rtol=1.) + np.testing.assert_allclose(param_values_rp['A0'], target_values['background_A0'][1], rtol=1.) + np.testing.assert_allclose(param_values_rp['A1'], target_values['background_A1'][1], rtol=1.) + + if __name__ == '__main__': # Init random number import random