-
Notifications
You must be signed in to change notification settings - Fork 0
/
svm-train.cpp
573 lines (509 loc) · 14 KB
/
svm-train.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include <omp.h>
#include "svm.h"
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
void print_null(const char *s) {}
void exit_with_help()
{
printf(
"Usage: svm-train [options] training_set_file testing_set_file [model_file]\n"
"options:\n"
"-s svm_type : set type of SVM (default 0)\n"
" 0 -- C-SVC (multi-class classification)\n"
// " 1 -- nu-SVC (multi-class classification)\n"
// " 2 -- one-class SVM\n"
" 3 -- epsilon-SVR (regression)\n"
// " 4 -- nu-SVR (regression)\n"
//modify here fix svor
" 5 -- Fix-Margin-SVOR (ordinal regression)\n"
//modify here sum svor
" 6 -- Sum-of-Margins-SVOR (ordinal regression)\n"
"-t kernel_type : set type of kernel function (default 2)\n"
" 0 -- linear: u'*v\n"
" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
// " 4 -- precomputed kernel (kernel values in training_set_file)\n"
"-d degree : set degree in kernel function (default 3)\n"
"-g gamma : set gamma in kernel function (default 1/num_features)\n"
"-r coef0 : set coef0 in kernel function (default 0)\n"
"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
// "-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
//modify here epsilon-svr
"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
"-m cachesize : set total cache memory size in MB (default 2000); each thread will use cachesize/n memory\n"
"-e epsilon : set tolerance of termination criterion (default 0.001)\n"
"-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
// "-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
"-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
"-v n: n-fold cross validation mode\n"
// "-q : quiet mode (no outputs)\n"
"-T maxiter : Maximum number of iterations (default 10*(number of samples))\n"
"-I i : print accuracy after every i iterations (default maxiter/10)\n"
"-N nthreads : number of threads\n"
//modify here sum svor
"-u replication : number of sum-of-margins SVOR replication (default 2)\n"
);
exit(1);
}
void exit_input_error(int line_num)
{
fprintf(stderr, "Wrong input format at line %d\n", line_num);
exit(1);
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *testing_file_name, char *model_file_name);
//modify here svor
int read_problem(const char *filename,int svm_type);
int read_testing_problem(const char *filename_testing,int svm_type);
void do_cross_validation();
struct svm_parameter param; // set by parse_command_line
struct svm_problem prob; // set by read_problem
struct svm_model *model;
struct svm_node *x_space;
struct svm_node *x_space_test;
int cross_validation;
int nr_fold;
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if (fgets(line, max_line_len, input) == NULL)
return NULL;
while (strrchr(line, '\n') == NULL)
{
max_line_len *= 2;
line = (char *)realloc(line, max_line_len);
len = (int)strlen(line);
if (fgets(line + len, max_line_len - len, input) == NULL)
break;
}
return line;
}
int main(int argc, char **argv)
{
char input_file_name[1024];
char model_file_name[1024];
char testing_file_name[1024];
const char *error_msg;
parse_command_line(argc, argv, input_file_name, testing_file_name, model_file_name);
// modify here svor
if (read_problem(input_file_name,param.svm_type) == -1)
return -1;
if (param.maxiter == -1)
param.maxiter = prob.l * 10;
if (param.inneriter == -1)
param.inneriter = int(param.maxiter / 10);
error_msg = svm_check_parameter(&prob, ¶m);
//modify here svor
read_testing_problem(testing_file_name,param.svm_type);
if (error_msg)
{
fprintf(stderr, "ERROR: %s\n", error_msg);
exit(1);
}
if (cross_validation)
{
do_cross_validation();
}
else
{
model = svm_train(&prob, ¶m);
if (svm_save_model(model_file_name, model))
{
fprintf(stderr, "can't save model to file %s\n", model_file_name);
exit(1);
}
svm_free_and_destroy_model(&model);
}
svm_destroy_param(¶m);
free(prob.y);
free(prob.x);
free(x_space);
free(line);
return 0;
}
void do_cross_validation()
{
int i;
int total_correct = 0;
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
double *target = Malloc(double, prob.l);
svm_cross_validation(&prob, ¶m, nr_fold, target);
//modify here fix and sum-of-margins svor
if (param.svm_type == EPSILON_SVR ||
param.svm_type == NU_SVR || param.svm_type == FIX_SVOR || param.svm_type==SUM_OF_MARGINS_SVOR)
{
for (i = 0; i<prob.l; i++)
{
double y = prob.y[i];
double v = target[i];
total_error += (v - y)*(v - y);
sumv += v;
sumy += y;
sumvv += v*v;
sumyy += y*y;
sumvy += v*y;
}
printf("Cross Validation Mean squared error = %g\n", total_error / prob.l);
printf("Cross Validation Squared correlation coefficient = %g\n",
((prob.l*sumvy - sumv*sumy)*(prob.l*sumvy - sumv*sumy)) /
((prob.l*sumvv - sumv*sumv)*(prob.l*sumyy - sumy*sumy))
);
}
else
{
for (i = 0; i<prob.l; i++)
if (target[i] == prob.y[i])
++total_correct;
printf("Cross Validation Accuracy = %g%%\n", 100.0*total_correct / prob.l);
}
free(target);
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *test_file_name, char *model_file_name)
{
int i;
void(*print_func)(const char*) = NULL; // default printing to stdout
// default values
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.degree = 3;
param.gamma = 0; // 1/num_features
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 2000;
param.C = 1;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;
param.probability = 0;
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
cross_validation = 0;
param.maxiter = -1;
param.inneriter = -1;
// param.nthreads = -1;
param.nthreads = omp_get_max_threads();
//modify here sum svor
param.u = 2;
// parse options
for (i = 1; i<argc; i++)
{
if (argv[i][0] != '-') break;
if (++i >= argc)
exit_with_help();
switch (argv[i - 1][1])
{
case 's':
param.svm_type = atoi(argv[i]);
break;
case 't':
param.kernel_type = atoi(argv[i]);
break;
case 'd':
param.degree = atoi(argv[i]);
break;
case 'g':
param.gamma = atof(argv[i]);
break;
case 'r':
param.coef0 = atof(argv[i]);
break;
case 'n':
param.nu = atof(argv[i]);
break;
case 'm':
param.cache_size = atof(argv[i]);
break;
case 'c':
param.C = atof(argv[i]);
break;
case 'e':
param.eps = atof(argv[i]);
break;
case 'p':
param.p = atof(argv[i]);
break;
case 'h':
param.shrinking = atoi(argv[i]);
break;
case 'b':
param.probability = atoi(argv[i]);
break;
case 'T':
param.maxiter = atoi(argv[i]);
break;
case 'I':
param.inneriter = atoi(argv[i]);
break;
case 'N':
param.nthreads = atoi(argv[i]);
break;
case 'q':
print_func = &print_null;
i--;
break;
case 'v':
cross_validation = 1;
nr_fold = atoi(argv[i]);
if (nr_fold < 2)
{
fprintf(stderr, "n-fold cross validation: n must >= 2\n");
exit_with_help();
}
break;
case 'w':
++param.nr_weight;
param.weight_label = (int *)realloc(param.weight_label, sizeof(int)*param.nr_weight);
param.weight = (double *)realloc(param.weight, sizeof(double)*param.nr_weight);
param.weight_label[param.nr_weight - 1] = atoi(&argv[i - 1][2]);
param.weight[param.nr_weight - 1] = atof(argv[i]);
break;
case 'u':
param.u = atoi(argv[i]);
break;
default:
fprintf(stderr, "Unknown option: -%c\n", argv[i - 1][1]);
exit_with_help();
}
}
svm_set_print_string_function(print_func);
// determine filenames
if (i >= argc)
exit_with_help();
strcpy(input_file_name, argv[i]);
i++;
if (i >= argc)
exit_with_help();
strcpy(test_file_name, argv[i]);
if (i<argc - 1)
strcpy(model_file_name, argv[i + 1]);
else
{
char *p = strrchr(argv[i], '/');
if (p == NULL)
p = argv[i - 1];
else
++p;
sprintf(model_file_name, "%s.model", p);
}
}
// read in a problem (in svmlight format)
int read_problem(const char *filename, int svm_type)
{
int elements, max_index, inst_max_index, i, j;
FILE *fp = fopen(filename, "r");
char *endptr;
char *idx, *val, *label;
int dd = 0;
if (fp == NULL)
{
fprintf(stderr, "can't open input file %s\n", filename);
return -1;
}
prob.l = 0;
elements = 0;
max_line_len = 1024;
line = Malloc(char, max_line_len);
while (readline(fp) != NULL)
{
char *p = strtok(line, " \t"); // label
// features
while (1)
{
p = strtok(NULL, " \t");
if (p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature
break;
++elements;
}
++elements;
++prob.l;
}
rewind(fp);
prob.y = Malloc(double, prob.l);
prob.x = Malloc(struct svm_node *, prob.l);
// modify here svor
if (svm_type == FIX_SVOR || svm_type == SUM_OF_MARGINS_SVOR)
x_space = Malloc(struct svm_node,elements+prob.l);
else
x_space = Malloc(struct svm_node, elements);
max_index = 0;
j = 0;
for (i = 0; i<prob.l; i++)
{
inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
readline(fp);
prob.x[i] = &x_space[j];
label = strtok(line, " \t\n");
if (label == NULL) // empty line
exit_input_error(i + 1);
prob.y[i] = strtod(label, &endptr);
if (endptr == label || *endptr != '\0')
exit_input_error(i + 1);
while (1)
{
idx = strtok(NULL, ":");
val = strtok(NULL, " \t");
if (val == NULL)
break;
errno = 0;
x_space[j].index = (int)strtol(idx, &endptr, 10);
if (x_space[j].index > dd)
dd = x_space[j].index;
if (endptr == idx || errno != 0 || *endptr != '\0' || x_space[j].index <= inst_max_index)
exit_input_error(i + 1);
else
inst_max_index = x_space[j].index;
errno = 0;
x_space[j].value = strtod(val, &endptr);
if (endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
exit_input_error(i + 1);
++j;
}
if (inst_max_index > max_index)
max_index = inst_max_index;
if (svm_type == FIX_SVOR || svm_type == SUM_OF_MARGINS_SVOR)
//modify here svor bias
x_space[j++].value =1;
x_space[j++].index = -1;
}
////add test
//int nn = max_index + 1;
//for (i = 1; i < prob.l; i++)
//(prob.x[i] - 2)->index = nn;
//x_space[j - 2].index = nn;
prob.d = dd + 1;
if (param.gamma == 0 && max_index > 0)
param.gamma = 1.0 / max_index;
if (param.kernel_type == PRECOMPUTED)
for (i = 0; i<prob.l; i++)
{
if (prob.x[i][0].index != 0)
{
fprintf(stderr, "Wrong input format: first column must be 0:sample_serial_number\n");
exit(1);
}
if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)
{
fprintf(stderr, "Wrong input format: sample_serial_number out of range\n");
exit(1);
}
}
//modify here svor
if (svm_type == FIX_SVOR || svm_type == SUM_OF_MARGINS_SVOR)
prob.d = prob.d + 1;
fclose(fp);
return 0;
}
int read_testing_problem(const char *filename_testing,int svm_type)
{
int elements, max_index, inst_max_index, i, j;
FILE *fp = fopen(filename_testing, "r");
char *endptr;
char *idx, *val, *label;
if (fp == NULL)
{
fprintf(stderr, "can't open input file %s\n", filename_testing);
prob.l_test = 0;
return -1;
}
prob.l_test = 0;
elements = 0;
max_line_len = 1024;
line = Malloc(char, max_line_len);
while (readline(fp) != NULL)
{
char *p = strtok(line, " \t"); // label
// features
while (1)
{
p = strtok(NULL, " \t");
if (p == NULL || *p == '\n') // check '\n' as ' ' may be after the last feature
break;
++elements;
}
++elements;
++prob.l_test;
}
rewind(fp);
prob.y_test = Malloc(double, prob.l_test);
prob.x_test = Malloc(struct svm_node *, prob.l_test);
//modify here svor
if (svm_type == FIX_SVOR || svm_type == SUM_OF_MARGINS_SVOR)
x_space_test = Malloc(struct svm_node, elements + prob.l_test);
else
x_space_test = Malloc(struct svm_node, elements);
max_index = 0;
j = 0;
for (i = 0; i<prob.l_test; i++)
{
inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
readline(fp);
prob.x_test[i] = &x_space_test[j];
label = strtok(line, " \t\n");
if (label == NULL) // empty line
exit_input_error(i + 1);
prob.y_test[i] = strtod(label, &endptr);
if (endptr == label || *endptr != '\0')
exit_input_error(i + 1);
while (1)
{
idx = strtok(NULL, ":");
val = strtok(NULL, " \t");
if (val == NULL)
break;
errno = 0;
x_space_test[j].index = (int)strtol(idx, &endptr, 10);
if (endptr == idx || errno != 0 || *endptr != '\0' || x_space_test[j].index <= inst_max_index)
exit_input_error(i + 1);
else
inst_max_index = x_space_test[j].index;
errno = 0;
x_space_test[j].value = strtod(val, &endptr);
if (endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr)))
exit_input_error(i + 1);
if (x_space_test[j].index < prob.d)
++j;
else
{
printf("ERROR prob.d=%d, %d-th data, xindex = %d", prob.d, i, x_space_test[j].index);
}
}
// if(inst_max_index > max_index)
// max_index = inst_max_index;
if (svm_type == FIX_SVOR || svm_type == SUM_OF_MARGINS_SVOR)
//modify here svor bias
x_space_test[j++].value = 1;
x_space_test[j++].index = -1;
}
////add test
//int nn = max_index + 1;
//for (i = 1; i<prob.l_test; i++)
// (prob.x_test[i] - 2)->index = nn;
//x_space_test[j - 2].index = nn;
// if(param.gamma == 0 && max_index > 0)
// param.gamma = 1.0/max_index;
/* if(param.kernel_type == PRECOMPUTED)
for(i=0;i<prob.l;i++)
{
if (prob.x[i][0].index != 0)
{
fprintf(stderr,"Wrong input format: first column must be 0:sample_serial_number\n");
exit(1);
}
if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)
{
fprintf(stderr,"Wrong input format: sample_serial_number out of range\n");
exit(1);
}
}
*/
fclose(fp);
return 0;
}