-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathGX_CreatingDataTables.m
102 lines (76 loc) · 2.54 KB
/
GX_CreatingDataTables.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
clear PercenDiffPerfPulled_shaped dummy
for trl=1:4 %Sort by trials
for ss=1:10 %Subjects
if ss==1
dummy(:,1)=PercenDiffPerfPulledInMean(ss,:,trl)';
else
dummy=[dummy;PercenDiffPerfPulledInMean(ss,:,trl)'];
end
end
PercenDiffPerfPulled_shaped(:,trl)=dummy;
clear dummy
end
%Put together Non UI table
for ii=1:4
clear dummy
dummy = PercenDiffPerfPulled_shaped(:,ii);
dummy =dummy(:)
mask =cellfun(@(C) all(isnan(C)),dummy)
dummy(mask)= {' '};
switch(ii)
case 1
Trial_1=dummy;
case 2
Trial_2=dummy;
case 3
Trial_3=dummy;
case 4
Trial_4=dummy;
end
end
%This adds the average deviation across trials
clear dummy
dummy =PerDiffPerfPulledInMeanPooled';
dummy = num2cell(round(-1.*vertcat(dummy{:}),1));
mask =cellfun(@(C) all(isnan(C)),dummy)
dummy(mask)= {' '};
Mean_Deviation =dummy;
PercenDiffPerfPulled_shaped = [PercenDiffPerfPulled_shaped,dummy];
%This adds the standard deviation deviation across trials
clear dummy
dummy =PerDiffPerfPulledInStdPooled';
dummy =dummy(:)
mask =cellfun(@(C) all(isnan(C)),dummy)
dummy(mask)= {' '};
Stand_dev =round(dummy,1);
PercenDiffPerfPulled_shaped = [PercenDiffPerfPulled_shaped,dummy];
%This adds the stimulation type
Stim_type =repmat(MontageMat2',10,1)
PercenDiffPerfPulled_shaped = [Stim_type,PercenDiffPerfPulled_shaped];
%This adds the subject numbers
clear dummy
dummy =[NumUniqueSubjsNums.*ones(1,9)]';
dummy = num2cell(dummy(:))
Subj_N =dummy;
PercenDiffPerfPulled_shaped = [dummy,PercenDiffPerfPulled_shaped];
data =PercenDiffPerfPulled_shaped;%squeeze(reshape(PercenDiffPerfPulledInMean,90,4));%PercenDiffPerfPulledInMean(:,:,1);
columnName = {'Subject Number','Stim. Type', 'Trial 1','Trial 2','Trial 3','Trial 4','Mean Deviation','Std.'};
% fh = figure;
uifigure
t = uitable('Units','normalized','Position',...
[0 0 1 1], 'Data', data,...
'ColumnName', columnName,...
'RowName',[]);
t = uitable(uifigure, 'Data', data,...
'ColumnName', columnName,...
'RowName',[]);
% figPos = get(fh,'Position');
% tableExtent = get(t,'Extent');
% set(fh,'Position',[figPos(1:2), figPos(3:4).*tableExtent(3:4)]);
s1 = uistyle;
s1.BackgroundColor = [jet(3)];
addStyle(t,s1,'cell',[2 4;2 5;3 4])
tt =table(Subj_N,Trial_1,Stim_type, Trial_2,Trial_3,Trial_4,Mean_Deviation,Stand_dev)
uitable(uifigure, 'Data',tt,'ColumnName', columnName)
%TO DO : Add the bandpower measures to the table once calculated.
%Can use xlswrite to export table