@@ -1084,7 +1084,11 @@ void llama_model::load_hparams(llama_model_loader & ml) {
10841084 }
10851085 break;
10861086 default: type = LLM_TYPE_UNKNOWN;
1087- }
1087+ }
1088+
1089+ // Load attention parameters
1090+ ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
1091+ ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
10881092 } break;
10891093 case LLM_ARCH_GPT2:
10901094 {
@@ -3392,17 +3396,17 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
33923396 } break;
33933397 case LLM_ARCH_PLAMO2:
33943398 {
3399+ // mamba parameters
33953400 const uint32_t d_conv = hparams.ssm_d_conv;
33963401 const uint32_t d_state = hparams.ssm_d_state;
33973402 const uint32_t num_heads = hparams.ssm_dt_rank;
33983403 const uint32_t intermediate_size = hparams.ssm_d_inner;
3399- const uint32_t head_dim = intermediate_size / num_heads;
3400- const uint32_t qk_dim = head_dim;
3401- const uint32_t v_dim = head_dim;
3402- const int64_t num_attention_heads = hparams.n_head();
3403- const int64_t q_num_heads = num_attention_heads;
34043404 const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
34053405
3406+ // attention parameters
3407+ const uint32_t qk_dim = hparams.n_embd_head_k;
3408+ const uint32_t v_dim = hparams.n_embd_head_v;
3409+
34063410 tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
34073411
34083412 // output
@@ -3436,6 +3440,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
34363440 layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
34373441 layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
34383442 } else {
3443+ const int64_t num_attention_heads = hparams.n_head(i);
3444+ const int64_t q_num_heads = num_attention_heads;
34393445 const int64_t num_key_value_heads = hparams.n_head_kv(i);
34403446 const int64_t k_num_heads = num_key_value_heads;
34413447 const int64_t v_num_heads = num_key_value_heads;
@@ -3444,8 +3450,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
34443450 const int64_t v_proj_dim = v_num_heads * v_dim;
34453451
34463452 layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
3447- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {head_dim , num_attention_heads}, 0);
3448- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {head_dim , k_num_heads}, 0);
3453+ layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim , num_attention_heads}, 0);
3454+ layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim , k_num_heads}, 0);
34493455 layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
34503456 }
34513457
@@ -17611,6 +17617,7 @@ struct llm_build_plamo2 : public llm_graph_context_mamba {
1761117617 const int64_t n_embd_head_q = hparams.n_embd_head_k;
1761217618 const int64_t n_embd_head_k = hparams.n_embd_head_k;
1761317619 const int64_t n_embd_head_v = hparams.n_embd_head_v;
17620+ int32_t n_head = hparams.n_head(il);
1761417621 int32_t n_head_kv = hparams.n_head_kv(il);
1761517622
1761617623 const int64_t q_offset = 0;
0 commit comments