This repository has been archived by the owner on Jan 7, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2019_srp.tex
297 lines (257 loc) · 12.6 KB
/
2019_srp.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% baposter Landscape Poster
% LaTeX Template
% Version 1.0 (11/06/13)
%
% baposter Class Created by:
% Brian Amberg ([email protected])
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
%----------------------------------------------------------------------------------------
\documentclass[landscape,a0paper,fontscale=0.285]{baposter} % Adjust font scale/size
\usepackage{graphicx} % Required for including images
\graphicspath{{figs/}} % Directory in which figures are stored
\usepackage{amsmath} % For typesetting math
\usepackage{amssymb} % Adds new symbols to be used in math mode
\usepackage{mathtools}
\usepackage{url}
\usepackage[numbers]{natbib}
\usepackage{booktabs} % Top and bottom rules for tables
\usepackage{enumitem} % Used to reduce itemize/enumerate spacing
\usepackage{palatino} % Use the Palatino font
\usepackage[font=small,labelfont=bf]{caption} % Required for specifying captions to tables and figures
\usepackage{multicol} % Required for multiple columns
\setlength{\columnsep}{1.5em} % Slightly increase the space between columns
\setlength{\columnseprule}{0mm} % No horizontal rule between columns
\newcommand{\compresslist}{ % Define a command to reduce spacing within itemize enumerate environments, this is used right after \begin{itemize} or \begin{enumerate}
\setlength{\itemsep}{1pt}
\setlength{\parskip}{0pt}
\setlength{\parsep}{0pt}
}
\usepackage[nodisplayskipstretch]{setspace}
\setstretch{0.95}
\newcommand{\D}{\mathcal{D}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\M}{\mathcal{M}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\X}{\mathcal{X}}
\newcommand{\like}{\mathcal{L}}
\newcommand{\prob}{\mathbb{P}}
\newcommand{\1}{\mathbbm{1}}
\definecolor{lightblue}{rgb}{0.145,0.6666,1} % Defines color of content box headers
\begin{document}
\begin{poster}
{
headerborder=closed, % Adds a border around the header of content boxes
colspacing=1em, % Column spacing
bgColorOne=white, % Background color for the gradient on the left side of the poster
bgColorTwo=white, % Background color for the gradient on the right side of the poster
borderColor=lightblue, % Border color
headerColorOne=black, % Background color for the header in the content boxes (left side)
headerColorTwo=lightblue, % Background color for the header in the content boxes (right side)
headerFontColor=white, % Text color for the header text in the content boxes
boxColorOne=white, % Background color of the content boxes
textborder=roundedleft, % Format of the border around content boxes, can be: none, bars, coils, triangles, rectangle, rounded, roundedsmall, roundedright or faded
eyecatcher=true, % Set to false for ignoring the left logo in the title and move the title left
headerheight=0.1\textheight, % Height of the header
headershape=roundedright, % Specify the rounded corner in the content box headers, can be: rectangle, small-rounded, roundedright, roundedleft or rounded
headerfont=\Large\bf\textsc, % Large, bold and sans serif font in the headers of content boxes
%textfont={\setlength{\parindent}{1.5em}}, % Uncomment for paragraph indentation
linewidth=2pt % Width of the border lines around content boxes
}
%-------------------------------------------------------------------------------
% TITLE SECTION
%-------------------------------------------------------------------------------
%
{\includegraphics[height=6.5em]{logo_cal.jpg}} % university/lab logo on left
{\textbf{\LARGE Semiparametric Estimation with Robust Empirical Bayes Inference
and Supervised Clustering in High-Dimensional Biological Exposure
Studies\vspace{0.5em}}}
{\textsc{Nima S.~Hejazi, Mark J.~van der Laan, Martyn T.~Smith \& Alan
E.~Hubbard} \hspace{12pt} \textit{}}
{\includegraphics[height=9em]{logo_sph.jpg}} % university/lab logo on right
%-------------------------------------------------------------------------------
% OVERVIEW
%-------------------------------------------------------------------------------
\headerbox{Overview \& Motivations}{name=overview,column=0,row=0}{
\begin{itemize}
\itemsep0.5pt
\item A general approach for deriving stable variance estimates for
data-adaptive semiparametric estimators is introduced.
\item Variance moderation uniformly improves variance estimates, with a
negligible effect asymptotically.
\begin{itemize}
\itemsep0pt
\item curbing the error rate of tests relative to classical approaches
\item and facilitating \textit{supervised clustering} from derived
association profiles.
\end{itemize}
\item Illustrate how the proposal applies for any asymptotically linear
estimator through the lens of targeted maximum likelihood.
\item The \underline{\texttt{biotmle} R package} \cite{hejazi2017biotmle}
implements the variance moderation procedure, leveraging state-of-the-art
machine learning.
\end{itemize}
}
%-------------------------------------------------------------------------------
% INTRODUCTION
%-------------------------------------------------------------------------------
\headerbox{Data: Benzene Biomarkers}
{name=introduction,column=1,row=0,bottomaligned=overview}{
\begin{itemize}
\itemsep1pt
\item There is a pressing need for model-free, technology-agnostic statistical
methods for analyzing multiple kinds of exposome data.
\item We consider data generated by a study of occupational exposure, using
the \textit{Illumina Human Ref-8 BeadChips} platform.
\item Data on baseline confounders and exposure collected for $n = 125$
subjects/participants, with $22,000$+ gene expression measures.
\item Covariates ($W$): age, sex, smoking status.
\item Exposure ($A$): degree of Benzene exposure (none, $<1$ppm, $>5$ppm).
\item Outcome ($Y = (Y_b: b = 1, \ldots, B)$): gene expression measures
vector.
\end{itemize}
}
%-------------------------------------------------------------------------------
% METHODS 2: Supervised Clustering
%-------------------------------------------------------------------------------
\headerbox{Methodology II: Supervised Distance Matrices}{name=results,column=2,span=2,row=0}{
\begin{itemize}
\itemsep0.75pt
\item Let $\phi: (W, A, Y) \mapsto D_b(P_0)(O)$ be the EIF transformation,
where $D_b(P_0)(O_i)$ is the contribution of subject $i$ to the estimate of
the biomarker-specific target parameter $\Psi_{b,n}$.
\item $Z = \phi(W, A, Y)$ is then a $B \times N$ matrix, where each entry
$(b,i)$ may be interpreted as the degree to which subject $i$ deviates from
the target parameter $\Psi_{b,n}$ \cite{hejazi2018+supervised}, and is thus
an \textit{association profile}.
\item A \textit{supervised distance matrix} \cite{pollard2008supervised}
may be constructed by applying an appropriate distance metric of choice
(e.g., Euclidean, correlation) to the transformed values $Z$.
\item $\widetilde{T}(Z)$, the resultant $B \times B$ empirical distance
matrix, encodes the dissimilarity between pairs of biomarker association
profiles.
%\item When $\widetilde{T}(b,b')$ is small, the biomarkers $b$ and $b'$ have
%similar contriubtions to the target parameter $\Psi$, across the $n$
%subjects.
\item \textit{Supervised clustering} may be performed by applying standard
unsupervised clustering algorithms to the matrix $\widetilde{T}$, thereby
finding groups of biomarkers that share an association profile
w.r.t.~$\Psi$.
\item In the case of the average treatment effect, a supervised cluster in
$\widetilde{T}$ of biomarkers is a group whose causal differential
expression profiles varies similarly with the treatment $A \in \{0, 1\}$.
\end{itemize}
}
%-------------------------------------------------------------------------------
% REFERENCES
%-------------------------------------------------------------------------------
\headerbox{\small References}{name=references,column=2,above=bottom}{
\renewcommand{\section}[2]{\vskip 0.05em} % remove "References" section title
\tiny{ % Reduce the font size in this block
\setlength{\bibsep}{0.25pt}
\bibliographystyle{IEEEtran}
\bibliography{2019_srp}
\compresslist
\vspace{-0.7em}
}
}
%-------------------------------------------------------------------------------
% Contact Information
%-------------------------------------------------------------------------------
\headerbox{\small Contact Information}{name=ack,column=3,aligned=references,above=bottom}{
% This block is as tall as the references block
\begin{itemize}
\itemsep0.25pt
\item \textbf{N.S.~Hejazi}: \texttt{[email protected]};
\textbf{M.J.~van der Laan}: \texttt{[email protected]};
\textbf{M.T.~Smith}: \texttt{[email protected]};
\textbf{A.E.~Hubbard}: \texttt{[email protected]}
\item \url{https://bioconductor.org/packages/biotmle}
\item \url{https://arxiv.org/abs/1710.05451}
\end{itemize}
}
%-------------------------------------------------------------------------------
% CONCLUSION
%-------------------------------------------------------------------------------
\headerbox{Numerical Study \& Results}
{name=conclusion,column=2,span=2,row=0,below=results,above=references}{
\vspace{0.25em}
\begin{multicols}{2}
\begin{center}
\vspace*{-0.5cm}
\includegraphics[scale=0.48,trim={1cm 1cm 1cm 3cm},clip]{supervised_heatmap}
\captionof{figure}{\textit{Supervised heatmap} of the top 25 biomarkers
visualizes groups with a shared exposure response.}
\end{center}
\begin{center}
\vspace*{-0.55cm} % CHANGE THIS TO ALIGN IMAGES
\includegraphics[scale=0.173]{biotmle_fdr_eg}
\captionof{figure}{Enhanced control of the False Discovery Rate (FDR) with
variance-moderated efficient estimator.}
\end{center}
\end{multicols}
}
%-------------------------------------------------------------------------------
% METHODS
%-------------------------------------------------------------------------------
\headerbox{Methodology I: Semiparametric Variance Moderation}{name=method,column=0,span=2,below=overview,bottomaligned=references}{
% This block's bottom aligns with the bottom of the conclusion block
\begin{itemize}
%\compresslist
\itemsep0.50pt
\item Let observed data $O = (W, A, Y) \sim P_0 \in \M$, where $W$ represents
potential baseline confounders, $A$ the exposure of interest, and
$Y = ({Y_b}, b = 1, \dots, B)$ a vector of potential biomarkers.
\item We consider, as an example, the \textit{average treatment effect} (ATE),
as the causal parameter of interest, which is identified by the observed
data parameter:
\begin{equation}\label{ate}
\Psi_b(P_0) = \E_W[ Q_0^b(A = 1, W) - Q_0^b(A = 0, W)],
\end{equation}
where $Q_0^b(A, W) \equiv \E_{P_0}(Y_b \mid A, W)$ and may be estimated
via \textit{ensemble machine learning}
\cite{vdl2007super,breiman1996stacked,wolpert1992stacked}.
%\item To estimate $\Psi$ using the construction from Eqn.~\ref{ate}, a plug-in
%estimator may be constructed
%\begin{equation}
%\Psi_b(P_n) = \frac{1}{n} \sum_{i = 1}^n Q_n^b(A_i = 1, W_i) -
%Q_n^b(A_i = 0, W_i),
%\end{equation}
%where ${Q_n}^b$ is an initial estimate of ${Q_0}^b$ constructed via
%\textit{ensemble machine learning} \cite{vdl2007super,breiman1996stacked,
%wolpert1992stacked}.
\item Like the estimator $\hat{\beta}$ in a linear model $m(A,W \mid \beta)$,
$\Psi_b(P_n)$ is \textit{asymptotically linear} (for $\Psi_b$)
\cite{vdl2011targeted}:
\begin{equation}\label{asymp_lin}
\sqrt{n} (\Psi_b(P_n) - \Psi_b(P_0)) = \frac{1}{\sqrt{n}} \sum_{i=1}^n
D_b(O_i) + o_p(1).
\end{equation}
\item $\Psi_b$ has efficient influence function (EIF), relative to the
nonparametric model $\M$:
\begin{equation}\label{eif_ate}
D_b(P_0)(o) = \left(\frac{I(a = 1)}{g(1 \mid w)} -
\frac{I(a = 0)}{g(0 \mid w)}\right) \cdot \left[y_b - Q_0^b(a, w)\right]
+ \left(Q_0^b(1, w) - Q_0^b(0, w) - \Psi_b(P_0)(o)\right).
\end{equation}
\item A moderated test statistic \cite{smyth2004linear,hejazi2018+supervised}
may be constructed for use with asymptotically linear estimators:
\begin{equation}\label{mod_eif}
\widetilde{t}_b = \frac{\sqrt{n}(\Psi_b(P_n) -
\psi_{\text{null}})}{\widetilde{S}_{b,n}^2}
\quad \text{where} \quad
\widetilde{S}_{b,n}^2 = \frac{d_0S_0^2 + d_bS_b^2(D_{b,n})}{d_0 + d_b},
\end{equation}
$\{S_b^2, d_b\}$: var.~EIF and df for $b^{th}$ biomarker;
$\{S_0^2, d_0\}$: var.~EIF and df for other $(B-1)$ biomarkers.
\end{itemize}
}
\end{poster}
\end{document}