-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcascade.py
725 lines (617 loc) · 33.9 KB
/
cascade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
import numpy as np
from pathlib import Path
import os, cv2, time, csv, sys, gc
import pytz
from datetime import datetime
from collections import deque
from threading import Thread
from multiprocessing import Process
import telegram
from telegram.ext import Updater, CommandHandler, Filters, MessageHandler
import xml.etree.ElementTree as ET
sys.path.append('/home/pi/CatPreyAnalyzer')
sys.path.append('/home/pi')
from CatPreyAnalyzer.model_stages import PC_Stage, FF_Stage, Eye_Stage, Haar_Stage, CC_MobileNet_Stage
from CatPreyAnalyzer.camera_class import Camera
cat_cam_py = str(Path(os.getcwd()).parents[0])
class Spec_Event_Handler():
def __init__(self):
self.img_dir = os.path.join(cat_cam_py, 'CatPreyAnalyzer/debug/input')
self.out_dir = os.path.join(cat_cam_py, 'CatPreyAnalyzer/debug/output')
self.img_list = [x for x in sorted(os.listdir(self.img_dir)) if'.jpg' in x]
self.base_cascade = Cascade()
def log_to_csv(self, img_event_obj):
csv_name = img_event_obj.img_name.split('_')[0] + '_' + img_event_obj.img_name.split('_')[1] + '.csv'
file_exists = os.path.isfile(os.path.join(self.out_dir, csv_name))
with open(os.path.join(self.out_dir, csv_name), mode='a') as csv_file:
headers = ['Img_Name', 'CC_Cat_Bool', 'CC_Time', 'CR_Class', 'CR_Val', 'CR_Time', 'BBS_Time', 'HAAR_Time', 'FF_BBS_Bool', 'FF_BBS_Val', 'FF_BBS_Time', 'Face_Bool', 'PC_Class', 'PC_Val', 'PC_Time', 'Total_Time']
writer = csv.DictWriter(csv_file, delimiter=',', lineterminator='\n', fieldnames=headers)
if not file_exists:
writer.writeheader()
writer.writerow({'Img_Name':img_event_obj.img_name, 'CC_Cat_Bool':img_event_obj.cc_cat_bool,
'CC_Time':img_event_obj.cc_inference_time, 'CR_Class':img_event_obj.cr_class,
'CR_Val':img_event_obj.cr_val, 'CR_Time':img_event_obj.cr_inference_time,
'BBS_Time':img_event_obj.bbs_inference_time,
'HAAR_Time':img_event_obj.haar_inference_time, 'FF_BBS_Bool':img_event_obj.ff_bbs_bool,
'FF_BBS_Val':img_event_obj.ff_bbs_val, 'FF_BBS_Time':img_event_obj.ff_bbs_inference_time,
'Face_Bool':img_event_obj.face_bool,
'PC_Class':img_event_obj.pc_prey_class, 'PC_Val':img_event_obj.pc_prey_val,
'PC_Time':img_event_obj.pc_inference_time, 'Total_Time':img_event_obj.total_inference_time})
def debug(self):
event_object_list = []
for event_img in sorted(self.img_list):
event_object_list.append(Event_Element(img_name=event_img, cc_target_img=cv2.imread(os.path.join(self.img_dir, event_img))))
for event_obj in event_object_list:
start_time = time.time()
single_cascade = self.base_cascade.do_single_cascade(event_img_object=event_obj)
single_cascade.total_inference_time = sum(filter(None, [
single_cascade.cc_inference_time,
single_cascade.cr_inference_time,
single_cascade.bbs_inference_time,
single_cascade.haar_inference_time,
single_cascade.ff_bbs_inference_time,
single_cascade.ff_haar_inference_time,
single_cascade.pc_inference_time]))
print("Total Inference Time:", single_cascade.total_inference_time)
print('Total Runtime:', time.time() - start_time)
# Write img to output dir and log csv of each event
cv2.imwrite(os.path.join(self.out_dir, single_cascade.img_name), single_cascade.output_img)
#self.log_to_csv(img_event_obj=single_cascade)
class Sequential_Cascade_Feeder():
def __init__(self):
self.log_dir = os.path.join(os.getcwd(), 'log')
print('Log Dir:', self.log_dir)
self.event_nr = 0
self.base_cascade = Cascade()
self.DEFAULT_FPS_OFFSET = 2
self.QUEQUE_MAX_THRESHOLD = 30
self.fps_offset = self.DEFAULT_FPS_OFFSET
self.MAX_PROCESSES = 5
self.EVENT_FLAG = False
self.event_objects = []
self.patience_counter = 0
self.PATIENCE_FLAG = False
self.FACE_FOUND_FLAG = False
self.event_reset_threshold = 6
self.event_reset_counter = 0
self.cumulus_points = 0
self.cumulus_prey_threshold = -10
self.cumulus_no_prey_threshold = 2.9603
self.prey_val_hard_threshold = 0.6
self.face_counter = 0
self.PREY_FLAG = None
self.NO_PREY_FLAG = None
self.queues_cumuli_in_event = []
self.bot = NodeBot()
self.processing_pool = []
self.main_deque = deque()
def reset_cumuli_et_al(self):
self.EVENT_FLAG = False
self.patience_counter = 0
self.PATIENCE_FLAG = False
self.FACE_FOUND_FLAG = False
self.cumulus_points = 0
self.fps_offset = self.DEFAULT_FPS_OFFSET
self.event_reset_counter = 0
self.face_counter = 0
self.PREY_FLAG = None
self.NO_PREY_FLAG = None
self.cumulus_points = 0
#Close the node_letin flag
self.bot.node_let_in_flag = False
self.event_objects.clear()
self.queues_cumuli_in_event.clear()
self.main_deque.clear()
#terminate processes when pool too large
if len(self.processing_pool) >= self.MAX_PROCESSES:
print('terminating oldest processes Len:', len(self.processing_pool))
for p in self.processing_pool[0:int(len(self.processing_pool)/2)]:
p.terminate()
print('Now processes Len:', len(self.processing_pool))
def log_event_to_csv(self, event_obj, queues_cumuli_in_event, event_nr):
csv_name = 'event_log.csv'
file_exists = os.path.isfile(os.path.join(self.log_dir, csv_name))
with open(os.path.join(self.log_dir, csv_name), mode='a') as csv_file:
headers = ['Event', 'Img_Name', 'Done_Time', 'Queue', 'Cumuli', 'CC_Cat_Bool', 'CC_Time', 'CR_Class', 'CR_Val', 'CR_Time', 'BBS_Time', 'HAAR_Time', 'FF_BBS_Bool', 'FF_BBS_Val', 'FF_BBS_Time', 'Face_Bool', 'PC_Class', 'PC_Val', 'PC_Time', 'Total_Time']
writer = csv.DictWriter(csv_file, delimiter=',', lineterminator='\n', fieldnames=headers)
if not file_exists:
writer.writeheader()
for i,img_obj in enumerate(event_obj):
writer.writerow({'Event':event_nr, 'Img_Name':img_obj.img_name, 'Done_Time':queues_cumuli_in_event[i][2],
'Queue':queues_cumuli_in_event[i][0],
'Cumuli':queues_cumuli_in_event[i][1],'CC_Cat_Bool':img_obj.cc_cat_bool,
'CC_Time':img_obj.cc_inference_time, 'CR_Class':img_obj.cr_class,
'CR_Val':img_obj.cr_val, 'CR_Time':img_obj.cr_inference_time,
'BBS_Time':img_obj.bbs_inference_time,
'HAAR_Time':img_obj.haar_inference_time, 'FF_BBS_Bool':img_obj.ff_bbs_bool,
'FF_BBS_Val':img_obj.ff_bbs_val, 'FF_BBS_Time':img_obj.ff_bbs_inference_time,
'Face_Bool':img_obj.face_bool,
'PC_Class':img_obj.pc_prey_class, 'PC_Val':img_obj.pc_prey_val,
'PC_Time':img_obj.pc_inference_time, 'Total_Time':img_obj.total_inference_time})
def send_prey_message(self, event_objects, cumuli):
prey_vals = [x.pc_prey_val for x in event_objects]
max_prey_index = prey_vals.index(max(filter(lambda x: x is not None, prey_vals)))
event_str = ''
face_events = [x for x in event_objects if x.face_bool]
for f_event in face_events:
print('****************')
print('Img_Name:', f_event.img_name)
print('PC_Val:', str('%.2f' % f_event.pc_prey_val))
print('****************')
event_str += '\n' + f_event.img_name + ' => PC_Val: ' + str('%.2f' % f_event.pc_prey_val)
sender_img = event_objects[max_prey_index].output_img
caption = 'Cumuli: ' + str(cumuli) + ' => PREY IN DA HOUSE!' + ' 🐁🐁🐁' + event_str
self.bot.send_img(img=sender_img, caption=caption)
return
def send_no_prey_message(self, event_objects, cumuli):
prey_vals = [x.pc_prey_val for x in event_objects]
min_prey_index = prey_vals.index(min(filter(lambda x: x is not None, prey_vals)))
event_str = ''
face_events = [x for x in event_objects if x.face_bool]
for f_event in face_events:
print('****************')
print('Img_Name:', f_event.img_name)
print('PC_Val:', str('%.2f' % f_event.pc_prey_val))
print('****************')
event_str += '\n' + f_event.img_name + ' => PC_Val: ' + str('%.2f' % f_event.pc_prey_val)
sender_img = event_objects[min_prey_index].output_img
caption = 'Cumuli: ' + str(cumuli) + ' => Cat is clean...' + ' 🐱' + event_str
self.bot.send_img(img=sender_img, caption=caption)
return
def send_dk_message(self, event_objects, cumuli):
event_str = ''
face_events = [x for x in event_objects if x.face_bool]
for f_event in face_events:
print('****************')
print('Img_Name:', f_event.img_name)
print('PC_Val:', str('%.2f' % f_event.pc_prey_val))
print('****************')
event_str += '\n' + f_event.img_name + ' => PC_Val: ' + str('%.2f' % f_event.pc_prey_val)
sender_img = face_events[0].output_img
caption = 'Cumuli: ' + str(cumuli) + ' => Cant say for sure...' + ' 🤷♀️' + event_str + '\nMaybe use /letin?'
self.bot.send_img(img=sender_img, caption=caption)
return
def get_event_nr(self):
tree = ET.parse(os.path.join(self.log_dir, 'info.xml'))
data = tree.getroot()
imgNr = int(data.find('node').get('imgNr'))
data.find('node').set('imgNr', str(int(imgNr) + 1))
tree.write(os.path.join(self.log_dir, 'info.xml'))
return imgNr
def queque_worker(self):
print('Working the Queque with len:', len(self.main_deque))
start_time = time.time()
#Feed the latest image in the Queue through the cascade
cascade_obj = self.feed(target_img=self.main_deque[self.fps_offset][1], img_name=self.main_deque[self.fps_offset][0])[1]
print('Runtime:', time.time() - start_time)
done_timestamp = datetime.now(pytz.timezone('Europe/Zurich')).strftime("%Y_%m_%d_%H-%M-%S.%f")
print('Timestamp at Done Runtime:', done_timestamp)
overhead = datetime.strptime(done_timestamp, "%Y_%m_%d_%H-%M-%S.%f") - datetime.strptime(self.main_deque[self.fps_offset][0], "%Y_%m_%d_%H-%M-%S.%f")
print('Overhead:', overhead.total_seconds())
#Add this such that the bot has some info
self.bot.node_queue_info = len(self.main_deque)
self.bot.node_live_img = self.main_deque[self.fps_offset][1]
self.bot.node_over_head_info = overhead.total_seconds()
# Always delete the left part
for i in range(self.fps_offset + 1):
self.main_deque.popleft()
if cascade_obj.cc_cat_bool == True:
#We are inside an event => add event_obj to list
self.EVENT_FLAG = True
self.event_nr = self.get_event_nr()
self.event_objects.append(cascade_obj)
#Last cat pic for bot
self.bot.node_last_casc_img = cascade_obj.output_img
self.fps_offset = 0
#If face found add the cumulus points
if cascade_obj.face_bool:
self.face_counter += 1
self.cumulus_points += (50 - int(round(100 * cascade_obj.pc_prey_val)))
self.FACE_FOUND_FLAG = True
print('CUMULUS:', self.cumulus_points)
self.queues_cumuli_in_event.append((len(self.main_deque),self.cumulus_points, done_timestamp))
#Check the cumuli points and set flags if necessary
if self.face_counter > 0 and self.PATIENCE_FLAG:
if self.cumulus_points / self.face_counter > self.cumulus_no_prey_threshold:
self.NO_PREY_FLAG = True
print('NO PREY DETECTED... YOU CLEAN...')
p = Process(target=self.send_no_prey_message, args=(self.event_objects, self.cumulus_points / self.face_counter,), daemon=True)
p.start()
self.processing_pool.append(p)
#self.log_event_to_csv(event_obj=self.event_objects, queues_cumuli_in_event=self.queues_cumuli_in_event, event_nr=self.event_nr)
self.reset_cumuli_et_al()
elif self.cumulus_points / self.face_counter < self.cumulus_prey_threshold:
self.PREY_FLAG = True
print('IT IS A PREY!!!!!')
p = Process(target=self.send_prey_message, args=(self.event_objects, self.cumulus_points / self.face_counter,), daemon=True)
p.start()
self.processing_pool.append(p)
#self.log_event_to_csv(event_obj=self.event_objects, queues_cumuli_in_event=self.queues_cumuli_in_event, event_nr=self.event_nr)
self.reset_cumuli_et_al()
else:
self.NO_PREY_FLAG = False
self.PREY_FLAG = False
#Cat was found => still belongs to event => acts as dk state
self.event_reset_counter = 0
#No cat detected => reset event_counters if necessary
else:
print('NO CAT FOUND!')
self.event_reset_counter += 1
if self.event_reset_counter >= self.event_reset_threshold:
# If was True => event now over => clear queque
if self.EVENT_FLAG == True:
print('CLEARED QUEQUE BECAUSE EVENT OVER WITHOUT CONCLUSION...')
#TODO QUICK FIX
if self.face_counter == 0:
self.face_counter = 1
p = Process(target=self.send_dk_message, args=(self.event_objects, self.cumulus_points / self.face_counter,), daemon=True)
p.start()
self.processing_pool.append(p)
#self.log_event_to_csv(event_obj=self.event_objects, queues_cumuli_in_event=self.queues_cumuli_in_event, event_nr=self.event_nr)
self.reset_cumuli_et_al()
if self.EVENT_FLAG and self.FACE_FOUND_FLAG:
self.patience_counter += 1
if self.patience_counter > 2:
self.PATIENCE_FLAG = True
if self.face_counter > 1:
self.PATIENCE_FLAG = True
def single_debug(self):
start_time = time.time()
target_img_name = 'dummy_img.jpg'
target_img = cv2.imread(os.path.join(cat_cam_py, 'CatPreyAnalyzer/readme_images/lenna_casc_Node1_001557_02_2020_05_24_09-49-35.jpg'))
cascade_obj = self.feed(target_img=target_img, img_name=target_img_name)[1]
print('Runtime:', time.time() - start_time)
return cascade_obj
def queque_handler(self):
# Do this to force run all networks s.t. the network inference time stabilizes
self.single_debug()
camera = Camera()
camera_thread = Thread(target=camera.fill_queue, args=(self.main_deque,), daemon=True)
camera_thread.start()
while(True):
if len(self.main_deque) > self.QUEQUE_MAX_THRESHOLD:
self.main_deque.clear()
self.reset_cumuli_et_al()
# Clean up garbage
gc.collect()
print('DELETING QUEQUE BECAUSE OVERLOADED!')
self.bot.send_text(message='Running Hot... had to kill Queque!')
elif len(self.main_deque) > self.DEFAULT_FPS_OFFSET:
self.queque_worker()
else:
print('Nothing to work with => Queque_length:', len(self.main_deque))
time.sleep(0.25)
#Check if user force opens the door
if self.bot.node_let_in_flag == True:
self.reset_cumuli_et_al()
open_time = 5
self.bot.send_text('Ok door is open for ' + str(open_time) + 's...')
time.sleep(open_time)
self.bot.send_text('Door locked again, back to business...')
def dummy_queque_handler(self):
# Do this to force run all networks s.t. the network inference time stabilizes
self.single_debug()
dummyque = DummyDQueque()
dummy_thread = Thread(target=dummyque.dummy_queque_filler, args=(self.main_deque,))
dummy_thread.start()
while(True):
if len(self.main_deque) > self.QUEQUE_MAX_THRESHOLD:
self.main_deque.clear()
print('DELETING QUEQUE BECAUSE OVERLOADED!')
self.bot.send_text(message='Running Hot... had to kill Queque!')
elif len(self.main_deque) > self.DEFAULT_FPS_OFFSET:
self.queque_worker()
else:
print('Nothing to work with => Queque_length:', len(self.main_deque))
time.sleep(0.25)
#Check if user force opens the door
if self.bot.node_let_in_flag == True:
self.reset_cumuli_et_al()
open_time = 5
self.bot.send_text('Ok door is open for ' + str(open_time) + 's...')
time.sleep(open_time)
self.bot.send_text('Door locked again, back to business...')
def feed(self, target_img, img_name):
target_event_obj = Event_Element(img_name=img_name, cc_target_img=target_img)
start_time = time.time()
single_cascade = self.base_cascade.do_single_cascade(event_img_object=target_event_obj)
single_cascade.total_inference_time = sum(filter(None, [
single_cascade.cc_inference_time,
single_cascade.cr_inference_time,
single_cascade.bbs_inference_time,
single_cascade.haar_inference_time,
single_cascade.ff_bbs_inference_time,
single_cascade.ff_haar_inference_time,
single_cascade.pc_inference_time]))
total_runtime = time.time() - start_time
print('Total Runtime:', total_runtime)
return total_runtime, single_cascade
class Event_Element():
def __init__(self, img_name, cc_target_img):
self.img_name = img_name
self.cc_target_img = cc_target_img
self.cc_cat_bool = None
self.cc_pred_bb = None
self.cc_inference_time = None
self.cr_class = None
self.cr_val = None
self.cr_inference_time = None
self.bbs_target_img = None
self.bbs_pred_bb = None
self.bbs_inference_time = None
self.haar_pred_bb = None
self.haar_inference_time = None
self.ff_haar_bool = None
self.ff_haar_val = None
self.ff_haar_inference_time = None
self.ff_bbs_bool = None
self.ff_bbs_val = None
self.ff_bbs_inference_time = None
self.face_box = None
self.face_bool = None
self.pc_prey_class = None
self.pc_prey_val = None
self.pc_inference_time = None
self.total_inference_time = None
self.output_img = None
class Cascade:
def __init__(self):
# Models
self.cc_mobile_stage = CC_MobileNet_Stage()
self.pc_stage = PC_Stage()
self.ff_stage = FF_Stage()
self.eyes_stage = Eye_Stage()
self.haar_stage = Haar_Stage()
def do_single_cascade(self, event_img_object):
print(event_img_object.img_name)
cc_target_img = event_img_object.cc_target_img
original_copy_img = cc_target_img.copy()
#Do CC
start_time = time.time()
dk_bool, cat_bool, bbs_target_img, pred_cc_bb_full, cc_inference_time = self.do_cc_mobile_stage(cc_target_img=cc_target_img)
print('CC_Do Time:', time.time() - start_time)
event_img_object.cc_cat_bool = cat_bool
event_img_object.cc_pred_bb = pred_cc_bb_full
event_img_object.bbs_target_img = bbs_target_img
event_img_object.cc_inference_time = cc_inference_time
if cat_bool and bbs_target_img.size != 0:
print('Cat Detected!')
rec_img = self.cc_mobile_stage.draw_rectangle(img=original_copy_img, box=pred_cc_bb_full, color=(255, 0, 0), text='CC_Pred')
#Do HAAR
haar_snout_crop, haar_bbs, haar_inference_time, haar_found_bool = self.do_haar_stage(target_img=bbs_target_img, pred_cc_bb_full=pred_cc_bb_full, cc_target_img=cc_target_img)
rec_img = self.cc_mobile_stage.draw_rectangle(img=rec_img, box=haar_bbs, color=(0, 255, 255), text='HAAR_Pred')
event_img_object.haar_pred_bb = haar_bbs
event_img_object.haar_inference_time = haar_inference_time
if haar_found_bool and haar_snout_crop.size != 0 and self.cc_haar_overlap(cc_bbs=pred_cc_bb_full, haar_bbs=haar_bbs) >= 0.1:
inf_bb = haar_bbs
face_bool = True
snout_crop = haar_snout_crop
else:
# Do EYES
bbs_snout_crop, bbs, eye_inference_time = self.do_eyes_stage(eye_target_img=bbs_target_img,
cc_pred_bb=pred_cc_bb_full,
cc_target_img=cc_target_img)
rec_img = self.cc_mobile_stage.draw_rectangle(img=rec_img, box=bbs, color=(255, 0, 255), text='BBS_Pred')
event_img_object.bbs_pred_bb = bbs
event_img_object.bbs_inference_time = eye_inference_time
# Do FF for Haar and EYES
bbs_dk_bool, bbs_face_bool, bbs_ff_conf, bbs_ff_inference_time = self.do_ff_stage(snout_crop=bbs_snout_crop)
event_img_object.ff_bbs_bool = bbs_face_bool
event_img_object.ff_bbs_val = bbs_ff_conf
event_img_object.ff_bbs_inference_time = bbs_ff_inference_time
inf_bb = bbs
face_bool = bbs_face_bool
snout_crop = bbs_snout_crop
event_img_object.face_bool = face_bool
event_img_object.face_box = inf_bb
if face_bool:
rec_img = self.cc_mobile_stage.draw_rectangle(img=rec_img, box=inf_bb, color=(255, 255, 255), text='INF_Pred')
print('Face Detected!')
#Do PC
pred_class, pred_val, inference_time = self.do_pc_stage(pc_target_img=snout_crop)
print('Prey Prediction: ' + str(pred_class))
print('Pred_Val: ', str('%.2f' % pred_val))
pc_str = ' PC_Pred: ' + str(pred_class) + ' @ ' + str('%.2f' % pred_val)
color = (0, 0, 255) if pred_class else (0, 255, 0)
rec_img = self.input_text(img=rec_img, text=pc_str, text_pos=(15, 100), color=color)
event_img_object.pc_prey_class = pred_class
event_img_object.pc_prey_val = pred_val
event_img_object.pc_inference_time = inference_time
else:
print('No Face Found...')
ff_str = 'No_Face'
rec_img = self.input_text(img=rec_img, text=ff_str, text_pos=(15, 100), color=(255, 255, 0))
else:
print('No Cat Found...')
rec_img = self.input_text(img=original_copy_img, text='CC_Pred: NoCat', text_pos=(15, 100), color=(255, 255, 0))
#Always save rec_img in event_img object
event_img_object.output_img = rec_img
return event_img_object
def cc_haar_overlap(self, cc_bbs, haar_bbs):
cc_area = abs(cc_bbs[0][0] - cc_bbs[1][0]) * abs(cc_bbs[0][1] - cc_bbs[1][1])
haar_area = abs(haar_bbs[0][0] - haar_bbs[1][0]) * abs(haar_bbs[0][1] - haar_bbs[1][1])
overlap = haar_area / cc_area
print('Overlap: ', overlap)
return overlap
def infere_snout_crop(self, bbs, haar_bbs, bbs_face_bool, bbs_ff_conf, haar_face_bool, haar_ff_conf, cc_target_img):
#Combine BBS's if both are faces
if bbs_face_bool and haar_face_bool:
xmin = min(bbs[0][0], haar_bbs[0][0])
ymin = min(bbs[0][1], haar_bbs[0][1])
xmax = max(bbs[1][0], haar_bbs[1][0])
ymax = max(bbs[1][1], haar_bbs[1][1])
inf_bb = np.array([(xmin,ymin), (xmax,ymax)]).reshape((-1, 2))
snout_crop = cc_target_img[ymin:ymax, xmin:xmax]
return snout_crop, inf_bb, False, True, (bbs_ff_conf + haar_ff_conf)/2
#When they are different choose the one that is true, if none is true than there is no face
else:
if bbs_face_bool:
xmin = bbs[0][0]
ymin = bbs[0][1]
xmax = bbs[1][0]
ymax = bbs[1][1]
inf_bb = np.array([(xmin, ymin), (xmax, ymax)]).reshape((-1, 2))
snout_crop = cc_target_img[ymin:ymax, xmin:xmax]
return snout_crop, inf_bb, False, True, bbs_ff_conf
elif haar_face_bool:
xmin = haar_bbs[0][0]
ymin = haar_bbs[0][1]
xmax = haar_bbs[1][0]
ymax = haar_bbs[1][1]
inf_bb = np.array([(xmin, ymin), (xmax, ymax)]).reshape((-1, 2))
snout_crop = cc_target_img[ymin:ymax, xmin:xmax]
return snout_crop, inf_bb, False, True, haar_ff_conf
else:
ff_conf = (bbs_ff_conf + haar_ff_conf)/2 if haar_face_bool else bbs_ff_conf
return None, None, False, False, ff_conf
def calc_iou(self, gt_bbox, pred_bbox):
(x_topleft_gt, y_topleft_gt), (x_bottomright_gt, y_bottomright_gt) = gt_bbox.tolist()
(x_topleft_p, y_topleft_p), (x_bottomright_p, y_bottomright_p) = pred_bbox.tolist()
if (x_topleft_gt > x_bottomright_gt) or (y_topleft_gt > y_bottomright_gt):
raise AssertionError("Ground Truth Bounding Box is not correct")
if (x_topleft_p > x_bottomright_p) or (y_topleft_p > y_bottomright_p):
raise AssertionError("Predicted Bounding Box is not correct", x_topleft_p, x_bottomright_p, y_topleft_p, y_bottomright_gt)
# if the GT bbox and predcited BBox do not overlap then iou=0
if (x_bottomright_gt < x_topleft_p):# If bottom right of x-coordinate GT bbox is less than or above the top left of x coordinate of the predicted BBox
return 0.0
if (y_bottomright_gt < y_topleft_p): # If bottom right of y-coordinate GT bbox is less than or above the top left of y coordinate of the predicted BBox
return 0.0
if (x_topleft_gt > x_bottomright_p): # If bottom right of x-coordinate GT bbox is greater than or below the bottom right of x coordinate of the predcited BBox
return 0.0
if (y_topleft_gt > y_bottomright_p): # If bottom right of y-coordinate GT bbox is greater than or below the bottom right of y coordinate of the predcited BBox
return 0.0
GT_bbox_area = (x_bottomright_gt - x_topleft_gt + 1) * (y_bottomright_gt - y_topleft_gt + 1)
Pred_bbox_area = (x_bottomright_p - x_topleft_p + 1) * (y_bottomright_p - y_topleft_p + 1)
x_top_left = np.max([x_topleft_gt, x_topleft_p])
y_top_left = np.max([y_topleft_gt, y_topleft_p])
x_bottom_right = np.min([x_bottomright_gt, x_bottomright_p])
y_bottom_right = np.min([y_bottomright_gt, y_bottomright_p])
intersection_area = (x_bottom_right - x_top_left + 1) * (y_bottom_right - y_top_left + 1)
union_area = (GT_bbox_area + Pred_bbox_area - intersection_area)
return intersection_area / union_area
def do_cc_mobile_stage(self, cc_target_img):
pred_cc_bb_full, cat_bool, inference_time = self.cc_mobile_stage.do_cc(target_img=cc_target_img)
dk_bool = False if cat_bool is True else True
if cat_bool:
bbs_xmin = pred_cc_bb_full[0][0]
bbs_ymin = pred_cc_bb_full[0][1]
bbs_xmax = pred_cc_bb_full[1][0]
bbs_ymax = pred_cc_bb_full[1][1]
bbs_target_img = cc_target_img[bbs_ymin:bbs_ymax, bbs_xmin:bbs_xmax]
return dk_bool, cat_bool, bbs_target_img, pred_cc_bb_full, inference_time
else:
return dk_bool, cat_bool, None, None, inference_time
def do_eyes_stage(self, eye_target_img, cc_pred_bb, cc_target_img):
snout_crop, bbs, inference_time = self.eyes_stage.do_eyes(cc_target_img, eye_target_img, cc_pred_bb)
return snout_crop, bbs, inference_time
def do_haar_stage(self, target_img, pred_cc_bb_full, cc_target_img):
haar_bbs, haar_inference_time, haar_found_bool = self.haar_stage.haar_do(target_img=target_img, cc_bbs=pred_cc_bb_full, full_img=cc_target_img)
pc_xmin = int(haar_bbs[0][0])
pc_ymin = int(haar_bbs[0][1])
pc_xmax = int(haar_bbs[1][0])
pc_ymax = int(haar_bbs[1][1])
snout_crop = cc_target_img[pc_ymin:pc_ymax, pc_xmin:pc_xmax].copy()
return snout_crop, haar_bbs, haar_inference_time, haar_found_bool
def do_ff_stage(self, snout_crop):
face_bool, ff_conf, ff_inference_time = self.ff_stage.ff_do(target_img=snout_crop)
dk_bool = False if face_bool is True else True
return dk_bool, face_bool, ff_conf, ff_inference_time
def do_pc_stage(self, pc_target_img):
pred_class, pred_val, inference_time = self.pc_stage.pc_do(target_img=pc_target_img)
return pred_class, pred_val, inference_time
def input_text(self, img, text, text_pos, color):
font = cv2.FONT_HERSHEY_SIMPLEX
fontScale = 2
lineType = 3
cv2.putText(img, text,
text_pos,
font,
fontScale,
color,
lineType)
return img
class NodeBot():
def __init__(self):
#Insert Chat ID and Bot Token according to Telegram API
#self.CHAT_ID = 'xxxxxxxxxxxxx'
#self.BOT_TOKEN = 'xxxxxxxxxxxxx'
self.last_msg_id = 0
self.bot_updater = Updater(token=self.BOT_TOKEN)
self.bot_dispatcher = self.bot_updater.dispatcher
self.commands = ['/help', '/nodestatus', '/sendlivepic', '/sendlastcascpic', '/letin', '/reboot']
self.node_live_img = None
self.node_queue_info = None
self.node_status = None
self.node_last_casc_img = None
self.node_over_head_info = None
self.node_let_in_flag = None
#Init the listener
self.init_bot_listener()
def init_bot_listener(self):
telegram.Bot(token=self.BOT_TOKEN).send_message(chat_id=self.CHAT_ID, text='Good Morning, NodeBot is online!' + '🤙')
# Add all commands to handler
help_handler = CommandHandler('help', self.bot_help_cmd)
self.bot_dispatcher.add_handler(help_handler)
node_status_handler = CommandHandler('nodestatus', self.bot_send_status)
self.bot_dispatcher.add_handler(node_status_handler)
send_pic_handler = CommandHandler('sendlivepic', self.bot_send_live_pic)
self.bot_dispatcher.add_handler(send_pic_handler)
send_last_casc_pic = CommandHandler('sendlastcascpic', self.bot_send_last_casc_pic)
self.bot_dispatcher.add_handler(send_last_casc_pic)
letin = CommandHandler('letin', self.node_let_in)
self.bot_dispatcher.add_handler(letin)
reboot = CommandHandler('reboot', self.node_reboot)
self.bot_dispatcher.add_handler(reboot)
# Start the polling stuff
self.bot_updater.start_polling()
def bot_help_cmd(self, bot, update):
bot_message = 'Following commands supported:'
for command in self.commands:
bot_message += '\n ' + command
self.send_text(bot_message)
def node_let_in(self, bot, update):
self.node_let_in_flag = True
def node_reboot(self, bot, update):
for i in range(5):
time.sleep(1)
bot_message = 'Rebooting in ' + str(5-i) + ' seconds...'
self.send_text(bot_message)
self.send_text('See ya later Alligator 🐊🐊🐊')
os.system("sudo reboot")
def bot_send_last_casc_pic(self, bot, update):
if self.node_last_casc_img is not None:
cv2.imwrite('last_casc.jpg', self.node_last_casc_img)
caption = 'Last Cascade!'
self.send_img(self.node_last_casc_img, caption)
else:
self.send_text('No casc img available yet...')
def bot_send_live_pic(self, bot, update):
if self.node_live_img is not None:
cv2.imwrite('live_img.jpg', self.node_live_img)
caption = 'Here ya go...'
self.send_img(self.node_live_img, caption)
else:
self.send_text('No img available yet...')
def bot_send_status(self, bot, update):
if self.node_queue_info is not None and self.node_over_head_info is not None:
bot_message = 'Queue length: ' + str(self.node_queue_info) + '\nOverhead: ' + str(self.node_over_head_info) + 's'
else:
bot_message = 'No info yet...'
self.send_text(bot_message)
def send_text(self, message):
telegram.Bot(token=self.BOT_TOKEN).send_message(chat_id=self.CHAT_ID, text=message, parse_mode=telegram.ParseMode.MARKDOWN)
def send_img(self, img, caption):
cv2.imwrite('degubi.jpg', img)
telegram.Bot(token=self.BOT_TOKEN).send_photo(chat_id=self.CHAT_ID, photo=open('degubi.jpg', 'rb'), caption=caption)
class DummyDQueque():
def __init__(self):
self.target_img = cv2.imread(os.path.join(cat_cam_py, 'CatPreyAnalyzer/readme_images/lenna_casc_Node1_001557_02_2020_05_24_09-49-35.jpg'))
def dummy_queque_filler(self, main_deque):
while(True):
img_name = datetime.now(pytz.timezone('Europe/Zurich')).strftime("%Y_%m_%d_%H-%M-%S.%f")
main_deque.append((img_name, self.target_img))
print("Took image, que-length:", main_deque.__len__())
time.sleep(0.4)
if __name__ == '__main__':
sq_cascade = Sequential_Cascade_Feeder()
sq_cascade.queque_handler()