forked from gastruc/osv5m
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
executable file
·85 lines (65 loc) · 2.54 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
from models.module import Geolocalizer
import hydra
import wandb
from os.path import isfile, join
from shutil import copyfile
import torch
from omegaconf import OmegaConf
from omegaconf import open_dict
from hydra.core.hydra_config import HydraConfig
from hydra.utils import instantiate
from pytorch_lightning.callbacks import LearningRateMonitor
from lightning_fabric.utilities.rank_zero import _get_rank
from models.module import Geolocalizer
torch.set_float32_matmul_precision("high") # TODO do we need that?
# Registering the "eval" resolver allows for advanced config
# interpolation with arithmetic operations in hydra:
# https://omegaconf.readthedocs.io/en/2.3_branch/how_to_guides.html
OmegaConf.register_new_resolver("eval", eval)
def load_model(cfg, dict_config, wandb_id):
logger = instantiate(cfg.logger, id=open(wandb_id, "r").read(), resume="allow")
model = Geolocalizer.load_from_checkpoint(cfg.checkpoint, cfg=cfg.model)
trainer = instantiate(cfg.trainer, strategy=cfg.trainer.strategy, logger=logger)
return trainer, model
def hydra_boilerplate(cfg):
dict_config = OmegaConf.to_container(cfg, resolve=True)
trainer, model = load_model(cfg, dict_config, cfg.wandb_id)
return trainer, model
import copy
def generate_datamodules(cfg_):
for f in os.listdir(cfg_.test_dir):
cfg = copy.deepcopy(cfg_)
# open join(f, directory) with OmegaConf
with open_dict(cfg):
cfg_new = OmegaConf.load(join(cfg.test_dir, f))
cfg.datamodule = cfg_new.datamodule
cfg.dataset = cfg_new.dataset
cfg.dataset.test_transform = cfg_.dataset.test_transform
datamodule = instantiate(cfg.datamodule)
yield datamodule
if __name__ == "__main__":
import sys
sys.argv = (
[sys.argv[0]]
+ ["+pt_model_path=${hydra:runtime.config_sources}"]
+ sys.argv[1:]
)
@hydra.main(version_base=None)
def main(cfg):
# print(hydra.runtime.config_sources)
with open_dict(cfg):
path = cfg.pt_model_path[1]["path"]
cfg.wandb_id = join(path, "wandb_id.txt")
cfg.checkpoint = join(path, "last.ckpt")
cfg.computer.devices = 1
(
trainer,
model,
) = hydra_boilerplate(cfg)
for datamodule in generate_datamodules(cfg):
model.datamodule = datamodule
model.datamodule.setup()
print("Testing on", datamodule.test_dataset.class_name)
trainer.test(model, datamodule=datamodule)
main()