forked from atulsinha007/Domain-adaptation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearn_transformation2.py
315 lines (249 loc) · 10.5 KB
/
learn_transformation2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
# example which maximizes the sum of a list of integers
# each of which can be 0 or 1
import random
import numpy as np
import scipy.spatial.distance
from deap import base
from deap import creator
from deap import tools
import pickle
import copy
import sys
import time
NGEN = 100
pop_size = 200
cxpb = .8
m_fac = .2
m_prob = .2
np.random.seed(1)
rng = np.random
pstri = "./pickle_jar/"
fs = open(pstri + "tar_data_with_dic.pickle", "rb")
tup_t = pickle.load(fs)
fs.close()
target_arr, target_label, target_dic = tup_t
dum_arr = target_label.reshape((target_label.shape[0], 1))
clumped_arr = np.concatenate((target_arr, dum_arr), axis=1)
# print(dic)
numlis = np.arange(clumped_arr.shape[0])
rng.shuffle(numlis)
clumped_arr = clumped_arr[numlis]
# clumped_arr = clumped_arr[ numlis ]
clumped_target = clumped_arr[:]
ann = int((3/4)*clumped_target.shape[0])
print(ann)
tup_t = (target_rest_arr, target_rest_label), (target_test_arr, target_test_label) = (clumped_target[:ann, :-1], clumped_target[:ann, -1:]), (clumped_target[ann:, :-1], clumped_target[ann:, -1:])
#print(tup_t)
fs = open(pstri + "tar_tup.pickle", "wb")
pickle.dump(tup_t, fs)
fs.close()
target_dim = target_rest_arr.shape[1]
fs = open(pstri + "src_data_with_dic.pickle", "rb")
tup_s = pickle.load(fs)
fs.close()
source_arr, source_label, source_dic = tup_s
dum_arr = source_label.reshape((source_label.shape[0], 1))
clumped_arr = np.concatenate((source_arr, dum_arr), axis=1)
# print(dic)
numlis = np.arange(clumped_arr.shape[0])
rng.shuffle(numlis)
clumped_arr = clumped_arr[numlis]
# clumped_arr = clumped_arr[ numlis ]
clumped_source = clumped_arr[:]
#ann = (3//4)*clumped_source.shape[0]
ann = clumped_source.shape[0]
tup_s = (source_rest_arr, source_rest_label), (source_test_arr, source_test_label) = (clumped_source[:ann, :-1], clumped_source[:ann, -1:]), (clumped_source[ann:, :-1], clumped_source[ann:, -1:])
fs = open(pstri + "src_tup.pickle", "wb")
pickle.dump(tup_s, fs)
fs.close()
source_dim = source_rest_arr.shape[1]
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
class MatChromo:
def __init__(self, source_dim, target_dim, arr=None, rng = np.random):
self.array = rng.random((source_dim, target_dim))
creator.create("Individual", MatChromo, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
# Attribute generator
# define 'attr_bool' to be an attribute ('gene')
# which corresponds to integers sampled uniformly
# from the range [0,1] (i.e. 0 or 1 with equal
# probability)
#toolbox.register("attr_bool", random.randint, 0, 1)
def return_obj(class_name, source_dim, target_dim):
return class_name(source_dim, target_dim)
# Structure initializers
# define 'individual' to be an individual
# consisting of 100 'attr_bool' elements ('genes')
toolbox.register("individual", return_obj, creator.Individual,source_dim, target_dim )
# define the population to be a list of individuals
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# the goal ('fitness') function to be maximized
def euclidean_dist(transformed_target, source_instance):
return np.sqrt(np.sum((transformed_target - source_instance)**2))
def mahanalobis_dist(transformed_target, source_instance):
# print(transformed_target.shape, source_instance.shape)
# transformed_target = transformed_target.reshape((transformed_target.shape[0], 1))
# source_instance = source_instance.reshape((source_instance.shape[0], 1))
# print(transformed_target)
# print(np.cov(transformed_target), np.cov(source_instance))
# print(transformed_target.shape, source_instance.shape)
cov_matrix = np.cov(transformed_target, source_instance)
cov_matrix_inv = np.linalg.inv(cov_matrix)
# print(cov_matrix_inv)
X = np.vstack([transformed_target, source_instance])
V = np.cov(X.T)
VI = np.linalg.inv(V)
# print (np.diag(np.sqrt(np.dot(np.dot((transformed_target - source_instance),VI),(transformed_target - source_instance).T))))
mahanalobis_distance = scipy.spatial.distance.mahalanobis(transformed_target, source_instance, VI)
print(mahanalobis_distance)
# diff = transformed_target - source_instance
# print(diff.shape, cov_matrix_inv.shape)
# print(np.dot(diff, cov_matrix_inv))
# mahanalobis_distance = np.dot(np.dot(diff, cov_matrix_inv), diff.T)
# print(mahanalobis_distance)
# return mahanalobis_distance
return scipy.spatial.distance.mahalanobis(transformed_target, source_instance, VI)
def closeness_cost(ind):
sumi = 0
W = ind.array
#W = np.identity(W.shape[0])
# print( source_dic)
#print(target_rest_label)
for target_instance, target_lab in zip(target_rest_arr, target_rest_label):
# assert (target_instance in source_rest_arr)
min_dist = np.inf
target_instance = np.reshape(target_instance, (target_instance.shape[0], 1))
transformed_target = np.dot(W, target_instance)
transformed_target = np.ravel(transformed_target)
#assert (transformed_target in source_rest_arr)
#print(source_rest_arr.shape)
for source_instance, source_lab in zip(source_rest_arr, source_rest_label):
#print("here")
# print(transformed_target, source_instance)
#print(source_instance)
if source_lab == target_lab:
min_dist = min(min_dist, euclidean_dist(transformed_target, source_instance))
#print(min_dist)
sumi += min_dist
# sumi += np.sum(abs(W - np.identity(W.shape[0], 'float32')))
# print( sumi )
return (sumi, )
#----------
# Operator registration
#----------imp
# register the goal / fitness function
toolbox.register("evaluate", closeness_cost)
# register the crossover operator
def myCrossover(darr1, darr2, cxpb, rng = np.random):
arr1 = darr1.array
arr2 = darr2.array
for row in range(arr1.shape[0]):
for col in range(arr1.shape[1]):
if rng.random() < cxpb:
alpha = rng.random()
temp = copy.deepcopy(arr1[row][col])
arr1[row][col] = alpha*arr1[row][col] + (1-alpha)*arr2[row][col]
arr2[row][col] = alpha*arr2[row][col] + (1-alpha)*temp
del darr1.fitness.values
del darr2.fitness.values
return darr1, darr2
toolbox.register("mate", myCrossover, rng = np.random)
# register a mutation operator with a probability to
# flip each attribute/gene of 0.05
def myMutate(darr, m_prob, m_fac = 1, rng = np.random):
arr = darr.array
for row in range(arr.shape[0]):
index = rng.randint(0, arr.shape[1])
if rng.random() < m_prob:
arr[row][index] += rng.uniform(-1, 1)*m_fac
del(darr.fitness.values)
toolbox.register("mutate", myMutate, rng = np.random)
# operator for selecting individuals for breeding the next
# generation: each individual of the current generation
# is replaced by the 'fittest' (best) of three individuals
# drawn randomly from the current generation.
toolbox.register("select", tools.selRoulette)
#toolbox.register("select", tools.selRoulette)
#----------
def main():
random.seed(64)
global NGEN, pop_size
# create an initial population of 300 individuals (where
# each individual is a list of integers)
pop = toolbox.population(n=pop_size)
# CXPB is the probability with which two individuals
# are crossed
#
# MUTPB is the probability for mutating an individual
CXPB, MUTPB = 0.5, 0.2
print("Start of evolution")
# Evaluate the entire population
fitnesses = list(map(toolbox.evaluate, pop))
print(fitnesses)
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
print(" Evaluated %i individuals" % len(pop))
# Extracting all the fitnesses of
fits = [ind.fitness.values[0] for ind in pop]
# Variable keeping track of the number of generations
g = 0
# Begin the evolution
while g < NGEN:
# A new generation
g = g + 1
print("-- Generation %i --" % g)
# Select the next generation individuals
offspring = toolbox.select(pop, len(pop))
# Clone the selected individuals
offspring = list(map(toolbox.clone, offspring))
# Apply crossover and mutation on the offspring
for child1, child2 in zip(offspring[::2], offspring[1::2]):
toolbox.mate(child1, child2, CXPB)
for mutant in offspring:
# mutate an individual with probability MUTPB
toolbox.mutate(mutant, MUTPB)
#del mutant.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
print(" Evaluated %i individuals" % len(invalid_ind))
# The population is entirely replaced by the offspring
pop[:] = offspring
# Gather all the fitnesses in one list and print the stats
fits = [ind.fitness.values[0] for ind in pop]
length = len(pop)
mean = sum(fits) / length
sum2 = sum(x*x for x in fits)
std = abs(sum2 / length - mean**2)**0.5
print(" Min %s" % min(fits))
print(" Max %s" % max(fits))
print(" Avg %s" % mean)
print(" Std %s" % std)
ind_min = np.argmin(fitnesses)
print(pop[ ind_min ])
post_st = sys.argv[1]
fs= open("./pickle_jar/dublue"+post_st+".pickle", "wb")
pickle.dump(pop[ind_min].array, fs)
print(pop[ind_min].array)
fs.close()
print("-- End of (successful) evolution --")
best_ind = tools.selBest(pop, 1)[0]
print("Best individual is %s, %s" % (best_ind.array, best_ind.fitness.values))
if __name__ == "__main__":
main()