forked from atulsinha007/Domain-adaptation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpopulation.py
157 lines (115 loc) · 4.36 KB
/
population.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import random
import numpy as np
import network
#import pimadataf
import chromosome
import tensorflow as tf
import time
import gene
import copy
def give_neg_log_likelihood(arr, oneDarr):
parr = arr # normalize(arr,axis = 0)
if parr.shape[1] == 1:
summer = np.sum([- (oneDarr[i] * np.log(parr[i, 0] + 0.000000000001) + (1 - oneDarr[i]) * np.log(
1 - parr[i, 0] + 0.000000000001)) for i in range(parr.shape[0])])
else:
poneDarr = oneDarr.astype('int32')
# print(oneDarr)
summer = np.sum([- np.log(parr[i, poneDarr[i]] + 0.000000000001) for i in range(parr.shape[0])])
return summer / parr.shape[0]
def give_mse(arr, oneDarr):
onedarr = oneDarr.astype(dtype='int32')
twodarr = np.zeros(arr.shape)
for i in range(onedarr.shape[0]):
twodarr[i][onedarr[i]] = 1
return np.sum((arr - twodarr) ** 2)
def give_false_positive_ratio(arr, oneDarr):
if arr.shape[1] > 2:
print("false_positive is not appropriate objective, change objective function in Population.py")
exit(1)
if arr.shape[1] == 1:
ar1 = np.where(arr > 0.5, 1, 0)
ar1 = np.ravel(ar1)
else:
ar1 = np.argmax(arr, axis=1)
summer = np.sum([ar1[i] * (1 - oneDarr[i]) for i in range(oneDarr.shape[0])])
dummer = np.sum([(1 - ar1[i]) * (1 - oneDarr[i]) for i in range(ar1.shape[0])])
return summer / (summer + dummer)
def give_false_negative_ratio(arr, oneDarr):
if arr.shape[1] > 2:
print("false_positive is not appropriate objective, change objective function in Population.py")
exit(1)
if arr.shape[1] == 1:
ar1 = np.where(arr > 0.5, 1, 0)
ar1 = np.ravel(ar1)
else:
ar1 = np.argmax(arr, axis=1)
summer = np.sum([(1 - ar1[i]) * (oneDarr[i]) for i in range(oneDarr.shape[0])])
dummer = np.sum([(ar1[i]) * (oneDarr[i]) for i in range(ar1.shape[0])])
return summer / (summer + dummer)
def givesumar(size):
ar = [0]
for i in range(1, size + 1):
ar += [ar[i - 1] + i]
return ar
class Population(object):
"""Class to create population object, and handle its methods"""
def __init__(self, inputdim, outputdim, max_hidden_units, size=50, limittup=(-1, 1)):
self.size = size
self.max_hidden_units = max_hidden_units
self.list_chromo = [chromosome.Chromosome(inputdim, outputdim) for i in range(self.size)]
self.objective_arr = None
def set_list_chromo(self, newlist_chromo):
p = self.list_chromo
self.list_chromo = newlist_chromo # ndarray
self.set_fitness()
del (p)
def set_objective_arr(self, network_obj):
if not self.list_chromo:
print("list_chromo is not set")
exit(1)
lis = []
for chromo in self.list_chromo:
# print("cmatrix",chromo.convert_to_MatEnc(network_obj.inputdim, network_obj.outputdim).CMatrix['IO'])
outputarr = network_obj.feedforward_ne(chromo)
# print(outputarr)
# print(outputarr)
# hot_vec = give_hot_vector( outputarr )
neg_log_likelihood_val = give_neg_log_likelihood(outputarr, network_obj.resty)
mean_square_error_val = give_mse(outputarr, network_obj.resty)
false_positve_rat = give_false_positive_ratio(outputarr, network_obj.resty)
false_negative_rat = give_false_negative_ratio(outputarr, network_obj.resty)
lis.append([neg_log_likelihood_val, mean_square_error_val, false_positve_rat, false_negative_rat])
self.objective_arr = np.array(lis) # a 2d array of dimension #population X #objectives
# print(self.objective_arr)
def get_best(self):
pass
def get_average(self):
pass
def squa_test(x):
return (x ** 2).sum(axis=1)
def main():
import copy
dimtup = (8, 1)
pop = Population(4, dimtup, size=9)
print(pop.list_chromo)
neter = Network.Neterr(dimtup[0], dimtup[1], pop.list_chromo, pop.trainx, pop.trainy, pop.testx, pop.testy)
if __name__ == '__main__':
main()
z = 0
def rand_init(inputdim, outputdim):
global innov_ctr, z
newchromo = chromosome.Chromosome(0)
newchromo.node_ctr = inputdim + outputdim + 1
innov_ctr = 1 # Warning!! these two lines change(reset) global variables, here might be some error
lisI = [gene.Node(num_setter, 'I') for num_setter in range(1, newchromo.node_ctr - outputdim)]
lisO = [gene.Node(num_setter, 'O') for num_setter in range(inputdim + 1, newchromo.node_ctr)]
newchromo.node_arr = lisI + lisO
for inputt in lisI:
for outputt in lisO:
newchromo.conn_arr.append(gene.Conn(innov_ctr, (inputt, outputt), z, status=True))
z = z + 1
innov_ctr += 1
newchromo.bias_arr = [gene.BiasConn(outputt, random.random()) for outputt in lisO]
newchromo.dob = 0
return newchromo