forked from maryamsadeghimehr/HCV_Modelling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.R
154 lines (133 loc) · 6.78 KB
/
baseline.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
######################################################################
### This code provides all the required baseline chracteristics
### and Specification of the distribution of baseline characteristics
### It includes 4 parameters:
### p_HIVMSM, p_IDU_start, p_IDU_stop, P_HIV
### Also it include the proportion of patients in each fibrosis stage (start)
### We calculate time to get HIV, which depends on the probability of getting HIV after HCV, and it can be a number between 3 month to maxTime, or it never happens.
### We calculate the time of starting and stopping IDU, which depend on the probability of starting and stoping IDU respectively.
### We also have two function:
# - sr.fun to calculate the spontaneous recovery time
# - pw.eval.ext to calculate the background mortality
#####################################################################
#setwd("../Required_Data")
bl_number = 13 # number of baseline characteristics
statesNum = 52 # number of states
#proportion of patients in each fibrosis stages (F0, F1, F2, F3, F4) at simulation start (note: simulation starts at time of HCV infection)
start <- sample(c(1,2,3,4,5), cohortSize, c(0.8590, 0.1509, 0.0184, 0.00239, 0.00015), replace=T)
p_HIVMSM = 0.5
p_IDU_start = 0.1
p_IDU_stop = 1 # probability of stoping IDU
p_HIV = 0.01 # probability of getting HIV after HCV
################################Functions#########################################
#Baseline treatment time( Note: it can be used in scenarios where time between treatment and diagnosis is fixed.)
# It shows how long does it take to be treated after diagnosis and being eligible to be treated
##################################################
#Baseline spontaneous recovery time
###################################
sr.fun = function()
{
logisticfunc <- function(min, max, infl, slo) {min + ((max - min)/(1 + (teta / infl)^ slo))}
sr.t <- rep(0, cohortSize)
for (i in 1:cohortSize)
{
teta = runif( 1, 0, 1)
p = logisticfunc( min = 0, max = 1, infl = 0.25, slo = 2.23)
w <- runif(1, 0, 1)
ifelse( w <= p, sr.t[i] <- teta, sr.t[i] <- 999)
}
sr.t
}#End Of Spontaneous Recovery
#####################################################################################
#BACKGROUND MORTALITY
# will be used in the hazard_fun file to calculate the harzard function for mortality.
#To match age category with death rate (cuts is the value of the start of the intervall eg for eg 20-24 => cuts=20)
#########################################################
pw.eval.ext = function(Cuts, x, func.values, tol = 0.0001)
{
lengthCuts = length(Cuts)
unlist(lapply(x,
function(xp) {
if (xp < max(Cuts))
func.values[ which((Cuts[c(1:(lengthCuts - 1))] - rep(xp, lengthCuts - 1))*
(Cuts[c(2:lengthCuts)] - tol - rep(xp, lengthCuts-1)) <= 0 , arr.ind = TRUE)[1] ]
else func.values[lengthCuts]
}
))
}
###################################################################################
bl <- matrix (nrow = cohortSize, ncol = bl_number)
{
colnames(bl) <- c("Alcohol","Gender","HIV","HIV_time","MSM","IDU","IDU_time_start","IDU_time_stop", "Genotype" , "Origin", "Age", "BirthYear", "sr.time")
################################################################################
################################################################################################
bl[,"Alcohol"] = rep(data [case,"Alcohol"], cohortSize)
bl[,"Genotype"] = rep(data [case,"Genotype"], cohortSize)
bl[,"Origin"] = rep(data [case,"Origin"], cohortSize)
bl[,"Gender"] = rep(data[case,"Gender"], cohortSize)
bl[,"HIV"] = rep(data[case,"HIV"], cohortSize)
bl[,"IDU"] = rep(data[case,"IDU"], cohortSize)
bl[,"MSM"] = rep(data[case,"MSM"], cohortSize)
#bl[,"MSM"] = rep(1, cohortSize)
########################################################
########################################################
age_ID = data [case,"Age"]
bl[,"Age"] = switch (age_ID,
runif(cohortSize, 10, 21),
runif(cohortSize, 21, 31),
runif(cohortSize, 31, 41),
runif(cohortSize, 41, 51),
runif(cohortSize, 51, 61),
runif(cohortSize, 61, 71),
runif(cohortSize, 71, 81),
runif(cohortSize, 81, 91)
)
####################################################
birth_ID = data [case,"BirthYear"]
bl[,"BirthYear"] = switch (birth_ID,
sample(1937: 1947, cohortSize, replace=T),
sample(1948: 1957, cohortSize, replace=T),
sample( 1958: 1967, cohortSize, replace=T),
sample(1968: 1977, cohortSize, replace=T),
sample( 1978: 1987, cohortSize, replace=T),
sample(1988: 1997, cohortSize, replace=T),
sample(1998: 2007, cohortSize, replace=T),
sample(2008: 2016, cohortSize, replace=T)
)
###################################################################
bl[,"HIV_time"] <- (bl[,"HIV"])
#######################
for (i in 1: cohortSize)
{
bl[i,"HIV_time"] <- 999
w = runif(1, 0, 1)
if (bl[i,"HIV"] == 1)
bl[i,"HIV_time"] = 0 # time having hiv
if (bl[i,"HIV"] == 0)
{
ID = ifelse( w < p_HIV, w, -1)
bl[i,"HIV_time"] = ifelse( ID == -1, 999, runif(1, 0.25, maxTime)) # time having hiv
}
}
############################################################################################
bl[,"IDU_time_start"] <- bl[,"IDU"]
bl[,"IDU_time_stop"] <- bl[,"IDU"]
for (i in 1: cohortSize)
{
w = runif(1, 0, 1)
if (bl[i,"IDU"] == 0)
{
IDU_ID = ifelse( w < p_IDU_start, w, 0)
bl[i,"IDU_time_start"] = ifelse( IDU_ID == 0, 999, maxTime * IDU_ID + runif(1, 0, maxTime) * rbinom(1, 1, 0.5)) # time starting idu
}
if (bl[i,"IDU"] == 1)
bl[i,"IDU_time_start"] = 0 # time having hiv
teta = runif(1, 0, 1)
bl[i,"IDU_time_stop"] = ifelse ( bl[i,"IDU_time_start"] < maxTime && teta < p_IDU_stop, bl[i,"IDU_time_start"] + 0.2 * teta * maxTime , 999)
}
##########################################################################################
bl[,"sr.time"] <- sr.fun()
}
###################################################################################
bm_M <-c(bm[,3],rep(1,70)) # to set background mortality of patients >75 years old as = background mortality of patients 75 years old
bm_F <-c(bm[,4],rep(1,70)) # to set background mortality of patients >75 years old as = background mortality of patients 75 years old