-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPDHIs_code_fitting_and_calibration.py
838 lines (685 loc) · 31.3 KB
/
PDHIs_code_fitting_and_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 20 17:54:12 2022
@author: changshu
"""
#Data Import
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
import re
import matplotlib as mpl
os.chdir(r'/home/changshu/python2022/huanhu_data/hypertension_final_code')
df_combined = pd.read_csv('cohort_hypertension.csv')
df_combined.columns
# Define the age bins
bins = [59, 69, 79, np.inf]
# Define the labels for the bins
labels = [0, 1, 2]
# Use pd.cut() to create the age groups, setting `right` to be `False` to include the right bounds
df_combined['age_cat'] = pd.cut(df_combined['age'], bins=bins, labels=labels, right=False)
columns_to_round = ['WBC', 'NEU', 'LYM', 'MON', 'EOS', 'BAS', 'RBC', 'HGB', 'HCT',
'MCV', 'MCH', 'MCHC', 'RDW_SD', 'RDW_CV', 'PLT', 'PCT', 'MPV', 'PDW',
'P_LCR', 'IG', 'IG_p', 'NEUT_p', 'NEUT', 'NLR', 'LMR', 'PWR', 'PNR',
'PLR', 'SIII', 'SIRI', 'RCI', 'MON_p', 'BAS_p', 'NEU_p', 'EOS_p',
'LYM_p']
# rounding to three decimal places
df_combined[columns_to_round] = df_combined[columns_to_round].round(3)
#df_combined.to_csv('df_combined.csv', index=False)
df_combined = pd.read_csv('df_combined.csv')
#The dataset is divided in a ratio of 5:2:3
from sklearn.model_selection import train_test_split
# Set a random seed for reproducibility
random_seed = 42
# Shuffle the data
df_combined = df_combined.sample(frac=1, random_state=random_seed).reset_index(drop=True)
# Separate features (X) and target variable (y)
X = df_combined.drop('diagnosis', axis=1) # 'diagnosis' is assumed to be the target variable. Replace with your actual target column
y = df_combined['diagnosis']
# Split the data into train and temporary test set
X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.3, random_state=random_seed)
# Further split the temporary set into actual train and validation sets
X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=2/7, random_state=random_seed)
X_train.to_csv('X_train.csv', index=False)
y_train.to_csv('y_train.csv', index=False)
X_val.to_csv('X_val.csv', index=False)
y_val.to_csv('y_val.csv', index=False)
X_test.to_csv('X_test.csv', index=False)
y_test.to_csv('y_test.csv', index=False)
X_train.isna().sum()
#############################################################
####################################################################
###############Performing PDHIs feature selection using SULOV
X_train = pd.read_csv('X_train.csv')
y_train = pd.read_csv('y_train.csv')
X_val = pd.read_csv('X_val.csv')
y_val = pd.read_csv('y_val.csv')
X_test = pd.read_csv('X_test.csv')
y_test = pd.read_csv('y_test.csv')
features = ['WBC', 'NEU', 'LYM', 'MON', 'EOS', 'BAS', 'RBC',
'HGB', 'HCT', 'MCV', 'MCH', 'MCHC', 'RDW_SD', 'RDW_CV', 'PLT', 'PCT',
'MPV', 'PDW', 'P_LCR', 'IG', 'IG_p', 'NEUT', 'NEUT_p', 'NLR', 'LMR',
'PWR', 'PNR', 'PLR', 'SIII', 'SIRI', 'RCI', 'MON_p', 'BAS_p', 'NEU_p',
'EOS_p', 'LYM_p']
X_train_feature_selection = X_train[features]
########
import featurewiz as FW
wiz = FW.FeatureWiz(corr_limit=0.30, feature_engg='', category_encoders='', dask_xgboost_flag=False, nrows=None, verbose=2)
X_train_feature_selection = wiz.fit_transform(X_train_feature_selection, y_train)
print('Percentage reduction in features = %0.1f%%' %((1-len(wiz.features)/len(X_train.columns))*100))
X_train_feature_selection.columns
col_xcg = ['SIRI', 'HCT', 'RDW_CV', 'PLT', 'BAS_p', 'IG_p', 'EOS']
#heatmap for 7 col_xcg
X_train = X_train[col_xcg]
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'Times New Roman'
corr = X_train.corr()
sns.set(font_scale=1.5)
plt.figure(figsize=(20,20))
a = sns.heatmap(corr, annot=True, fmt='.2f', xticklabels=corr.columns.values,
yticklabels=corr.columns.values, annot_kws={"size": 30}, square=True)
a.set_xticklabels(a.get_xticklabels(), rotation=0, fontsize=25)
a.set_yticklabels(a.get_yticklabels(), rotation=45, fontsize=25)
cbar = a.collections[0].colorbar
cbar.ax.tick_params(labelsize=30)
plt.title('Correlation Heatmap', fontsize=32)
plt.show()
plt.savefig('SR_xcg_heatmap_7.pdf', dpi=300, bbox_inches='tight')
#######################################
#Performing feature selection for categorical variables
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
import re
os.chdir(r'/home/changshu/python2022/huanhu_data/hypertension_final_code')
X_train = pd.read_csv('X_train.csv')
y_train = pd.read_csv('y_train.csv')
y_train.value_counts()
col_cat =['diabetes', 'pneum', 'heart', 'sex',
'smoke', 'drink', 'smo_dri','age_cat']
#####################################################
from sklearn.feature_selection import chi2
df = X_train[col_cat]
from scipy.stats import chi2_contingency
import numpy as np
def cramers_V(var1,var2) :
crosstab =np.array(pd.crosstab(var1,var2, rownames=None, colnames=None)) # Cross table building
stat = chi2_contingency(crosstab)[0] # Keeping of the test statistic of the Chi2 test
obs = np.sum(crosstab) # Number of observations
mini = min(crosstab.shape)-1 # Take the minimum value between the columns and the rows of the cross table
return (stat/(obs*mini))
rows= []
for var1 in df:
col = []
for var2 in df :
cramers =cramers_V(df[var1], df[var2]) # Cramer's V test
col.append(round(cramers,2)) # Keeping of the rounded value of the Cramer's V
rows.append(col)
cramers_results = np.array(rows)
df_chi2_matrix = pd.DataFrame(cramers_results, columns = df.columns, index =df.columns)
#
plt.figure(figsize=(20,10))
sns.heatmap(df_chi2_matrix,annot=True , cmap ='YlOrRd')
plt.title("correlation of features")
df = df.drop(['smo_dri'],axis = 1)
from scipy.stats import chi2_contingency
import numpy as np
def cramers_V(var1,var2) :
crosstab =np.array(pd.crosstab(var1,var2, rownames=None, colnames=None)) # Cross table building
stat = chi2_contingency(crosstab)[0] # Keeping of the test statistic of the Chi2 test
obs = np.sum(crosstab) # Number of observations
mini = min(crosstab.shape)-1 # Take the minimum value between the columns and the rows of the cross table
return (stat/(obs*mini))
rows= []
for var1 in df:
col = []
for var2 in df :
cramers =cramers_V(df[var1], df[var2]) # Cramer's V test
col.append(round(cramers,2)) # Keeping of the rounded value of the Cramer's V
rows.append(col)
cramers_results = np.array(rows)
df_chi2_matrix = pd.DataFrame(cramers_results, columns = df.columns, index =df.columns)
#
plt.figure(figsize=(20,10))
sns.heatmap(df_chi2_matrix,annot=True , cmap ='YlOrRd')
plt.title("correlation of features")
plt.savefig('SR_cat_heatmap_7.pdf')
col_cat = ['diabetes', 'pneum', 'heart', 'sex',
'smoke', 'drink','age_cat']
#################robust normalization
col_xcg = ['SIRI', 'HCT', 'RDW_CV', 'PLT', 'BAS_p', 'IG_p', 'EOS']
X_train = pd.read_csv('X_train.csv')
from sklearn.preprocessing import RobustScaler
scaler = RobustScaler()
X_train=scaler.fit_transform(X_train[col_xcg])
import pickle
# save the scaler
with open('robust_scaler.pkl', 'wb') as file:
pickle.dump(scaler, file)
#########################################################
##########Hyperparameter selection for XGB-Mixed model
col_cat = ['diabetes', 'pneum', 'heart', 'sex',
'smoke', 'drink','age_cat']
col_xcg =['SIRI', 'HCT', 'RDW_CV', 'PLT', 'BAS_p', 'IG_p', 'EOS']
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import BernoulliNB
from sklearn.metrics import confusion_matrix, plot_confusion_matrix, classification_report
from sklearn.metrics import recall_score, accuracy_score,roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import ExtraTreesClassifier
from catboost import CatBoostClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
import optuna
col = col_cat+col_xcg
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
import re
os.chdir(r'/home/changshu/python2022/huanhu_data/hypertension_final_code')
X_train = pd.read_csv('X_train.csv')
X_val = pd.read_csv('X_val.csv')
y_train = pd.read_csv('y_train.csv')
y_val = pd.read_csv('y_val.csv')
from sklearn.preprocessing import RobustScaler
import pickle
# Load the saved scaler
with open('robust_scaler.pkl', 'rb') as file:
scaler_loaded = pickle.load(file)
# Separate continuous and categorical variables
X_train_cont = X_train[col_xcg]
X_train_cat = X_train[col_cat]
# Standardize only continuous variables
X_train_cont = scaler_loaded.transform(X_train_cont)
# Transform the array back to dataframe and assign the column names
X_train_cont = pd.DataFrame(X_train_cont, columns=col_xcg).reset_index(drop=True)
# Concatenate continuous and categorical variables back into one dataframe
X_train = pd.concat([X_train_cont, X_train_cat], axis=1)
################################################
import xgboost as xgb
import optuna
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
from imblearn.over_sampling import SMOTENC
from imblearn.pipeline import Pipeline
# Define which features are categorical for SMOTENC
# This is a boolean mask where True indicates a categorical feature
cat_mask = [col in col_cat for col in X_train.columns]
def objective(trial):
param = {
'n_estimators': trial.suggest_int('n_estimators', 100, 600),
'max_depth': trial.suggest_int('max_depth', 2, 6),
'learning_rate': trial.suggest_float('learning_rate', 0.01, .1),
'subsample': trial.suggest_float('subsample', 0.50, 1),
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.50, 1),
'gamma': trial.suggest_int('gamma', 0, 10),
'eta': trial.suggest_float('eta', 0.007, 0.013),
'min_child_weight' : trial.suggest_int('min_child_weight', 1, 10),
'objective': 'binary:logistic',
'lambda': trial.suggest_float('lambda', 1e-3, 5.0),
'alpha': trial.suggest_float('alpha', 1e-3, 5.0)
}
gbm = xgb.XGBClassifier(**param)
# Create a pipeline that first applies SMOTENC and then fits the model
pipeline = Pipeline([
('smote', SMOTENC(categorical_features=cat_mask,random_state=42)),
('gbm', gbm)
])
cv_score = cross_val_score(pipeline, X_train, y_train, cv=10, scoring='balanced_accuracy').mean()
return cv_score
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100)
best_params_ = study.best_params
########################################
from plotly.offline import plot, iplot, init_notebook_mode
fig = optuna.visualization.plot_optimization_history(study)
fig.layout.yaxis.titlefont.size = 30
fig.layout.yaxis.titlefont.size = 30
fig.layout.xaxis.titlefont.size = 30
fig.layout.yaxis.tickfont.size = 25
fig.layout.xaxis.tickfont.size = 25
fig.update_layout(font=dict(size=20))
plot(fig, filename='SR1_xg_full_plot11.html')
fig = optuna.visualization.plot_param_importances(study)
fig.layout.yaxis.titlefont.size = 30
fig.layout.yaxis.titlefont.size = 30
fig.layout.xaxis.titlefont.size = 30
fig.layout.yaxis.tickfont.size = 20
fig.layout.xaxis.tickfont.size = 25
fig.update_layout(font=dict(size=20))
plot(fig,filename='SR1_xg_full_plot22.html')
a = study.trials_dataframe()
#####################################################
from imblearn.over_sampling import SMOTENC
# Create an array indicating categorical features for SMOTENC
# If the feature is categorical, this will be True; otherwise False.
cat_features = [True if col in col_cat else False for col in X_train.columns]
# Create a SMOTENC instance
smote_nc = SMOTENC(categorical_features=cat_features, random_state=42)
# Fit and resample the data
X_train, y_train = smote_nc.fit_resample(X_train, y_train)
# Now use resampled data to fit the model
xgboost_model = XGBClassifier()
xgboost_final_xcg = xgboost_model.set_params(**best_params_).fit(X_train, y_train)
#calibration
col_xcg = ['SIRI', 'HCT', 'RDW_CV', 'PLT', 'BAS_p', 'IG_p', 'EOS']
col_cat = ['diabetes', 'pneum', 'heart', 'sex',
'smoke', 'drink','age_cat']
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
import re
import pickle
os.chdir(r'/home/changshu/python2022/huanhu_data/hypertension_final_code')
# Import val set
X_val = pd.read_csv('X_val.csv')
y_val = pd.read_csv("y_val.csv")
# Separate continuous and categorical variables
X_val_cont = X_val[col_xcg]
X_val_cat = X_val[col_cat]
# Load the saved scaler
with open('robust_scaler.pkl', 'rb') as file:
scaler_loaded = pickle.load(file)
# Standardize only continuous variables
X_val_cont = scaler_loaded.transform(X_val_cont)
# Transform the array back to dataframe and assign the column names
X_val_cont = pd.DataFrame(X_val_cont, columns=col_xcg).reset_index(drop=True)
# Concatenate continuous and categorical variables back into one dataframe
X_val = pd.concat([X_val_cont, X_val_cat], axis=1)
##Importing XGB-Mixed model
Pkl_Filename = "save/SR1_xgb_full_model.pkl"
# with open(Pkl_Filename, 'wb') as file:
# pickle.dump(xgboost_final_xcg, file)
with open(Pkl_Filename, 'rb') as file:
xgboost_final_xcg = pickle.load(file)
from sklearn.metrics import brier_score_loss, roc_auc_score
y_test_predict_proba = xgboost_final_xcg.predict_proba(X_val)[:, 1]
from sklearn.calibration import calibration_curve
fraction_of_positives0, mean_predicted_value0 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier0 = brier_score_loss(y_val, y_test_predict_proba)
##################
from sklearn.calibration import CalibratedClassifierCV
calibrated_clf = CalibratedClassifierCV(xgboost_final_xcg, method='isotonic', cv=5, n_jobs=-1)
calibrated_clf.fit(X_train, y_train.values.ravel())
y_test_predict_proba = calibrated_clf.predict_proba(X_val)[:, 1]
fraction_of_positives1, mean_predicted_value1 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier1 = brier_score_loss(y_val, y_test_predict_proba)
####################
clf_sigmoid = CalibratedClassifierCV(xgboost_final_xcg, cv=5, method='sigmoid', n_jobs = -1)
clf_sigmoid.fit(X_train, y_train.values.ravel())
y_test_predict_proba = clf_sigmoid.predict_proba(X_val)[:, 1]
fraction_of_positives2, mean_predicted_value2 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier2 = brier_score_loss(y_val, y_test_predict_proba)
######################
plt.figure(dpi=300,figsize=(10, 6))
plt.rc('font',family='Times New Roman')
plt.plot(mean_predicted_value2, fraction_of_positives2, 's-', color='orange', label='Calibrated (Platt),Brier:0.0617')
plt.plot(mean_predicted_value0, fraction_of_positives0, 's-', label='Uncalibrated, Brier:0.0576')
plt.plot(mean_predicted_value1, fraction_of_positives1, 's-', color='red', label='Calibrated (Isotonic),Brier:0.0605')
plt.plot([0, 1], [0, 1], '--', color='black')
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.rcParams.update({'font.size':18})
plt.gca().legend()
plt.savefig('SR1_xg_full.pdf')
import pickle
Pkl_Filename = "save/SR_xgb_full_model.pkl"
with open(Pkl_Filename, 'wb') as file:
pickle.dump(calibrated_clf, file)
###################################################
######################Hyperparameter selection for XGB-PDHIs model.
col_xcg = ['SIRI', 'HCT', 'RDW_CV', 'PLT', 'BAS_p', 'IG_p', 'EOS']
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
import re
import matplotlib as mpl
os.chdir(r'/home/changshu/python2022/huanhu_data/hypertension_final_code')
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import BernoulliNB
from sklearn.metrics import confusion_matrix, plot_confusion_matrix, classification_report
from sklearn.metrics import recall_score, accuracy_score,roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import ExtraTreesClassifier
from catboost import CatBoostClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.linear_model import SGDClassifier
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.preprocessing import LabelEncoder
import xgboost as xgb
import optuna
import os
os.chdir(r'/home/changshu/python2022/huanhu_data/hypertension_final_code')
X_train = pd.read_csv('X_train.csv')[col_xcg]
X_val = pd.read_csv('X_val.csv')[col_xcg]
y_train = pd.read_csv('y_train.csv')
y_val = pd.read_csv('y_val.csv')
from sklearn.preprocessing import RobustScaler
import pickle
with open('robust_scaler.pkl', 'rb') as file:
scaler_loaded = pickle.load(file)
# use it to transform your data
X_val = scaler_loaded.transform(X_val)
X_train = scaler_loaded.transform(X_train)
# transform the array back to dataframe and assign the column names
X_train = pd.DataFrame(X_train, columns=col_xcg).reset_index(drop=True)
X_val = pd.DataFrame(X_val, columns=col_xcg).reset_index(drop=True)
################################################
import xgboost as xgb
import optuna
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline as imbPipeline
def objective(trial):
param = {
'n_estimators': trial.suggest_int('n_estimators', 100, 600),
'max_depth': 5,#trial.suggest_int('max_depth', 2, 6),
'learning_rate': trial.suggest_float('learning_rate', 0.01, .1),
'subsample': trial.suggest_float('subsample', 0.50, 1),
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.50, 1),
'gamma': trial.suggest_int('gamma', 0, 10),
'eta': trial.suggest_float('eta', 0.007, 0.013),
'min_child_weight' : trial.suggest_int('min_child_weight', 1, 10),
'objective': 'binary:logistic',
'lambda': trial.suggest_float('lambda', 1e-3, 5.0),
'alpha': trial.suggest_float('alpha', 1e-3, 5.0)
}
# Create a pipeline that first applies SMOTE and then fits the model
pipeline = imbPipeline([
('smote', SMOTE(random_state=42)),
('gbm', xgb.XGBClassifier(**param))
])
cv_score = cross_val_score(pipeline, X_train, y_train, cv=10, scoring='balanced_accuracy').mean()
return cv_score
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100)
best_params_ = study.best_params
########################################
from plotly.offline import plot, iplot, init_notebook_mode
fig = optuna.visualization.plot_optimization_history(study)
fig.layout.yaxis.titlefont.size = 30
fig.layout.yaxis.titlefont.size = 30
fig.layout.xaxis.titlefont.size = 30
fig.layout.yaxis.tickfont.size = 25
fig.layout.xaxis.tickfont.size = 25
fig.update_layout(font=dict(size=20))
plot(fig, filename='SR1_xg_xcg_plot1.html')
fig = optuna.visualization.plot_param_importances(study)
fig.layout.yaxis.titlefont.size = 30
fig.layout.yaxis.titlefont.size = 30
fig.layout.xaxis.titlefont.size = 30
fig.layout.yaxis.tickfont.size = 20
fig.layout.xaxis.tickfont.size = 25
fig.update_layout(font=dict(size=20))
plot(fig,filename='SR1_xg_xcg_plot2.html')
a = study.trials_dataframe()
#########################
#########################
###
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state=42)
X_train, y_train = smote.fit_resample(X_train, y_train)
xgboost_model = XGBClassifier(**best_params_)
import pickle
Pkl_Filename = "save/SR1_xgb_xcg_model.pkl"
# with open(Pkl_Filename, 'wb') as file:
# pickle.dump(xgboost_final_xcg, file)
with open(Pkl_Filename, 'rb') as file:
xgboost_final_xcg = pickle.load(file)
from sklearn.metrics import brier_score_loss, roc_auc_score
y_test_predict_proba = xgboost_final_xcg.predict_proba(X_val)[:, 1]
from sklearn.calibration import calibration_curve
fraction_of_positives0, mean_predicted_value0 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier0 = brier_score_loss(y_val, y_test_predict_proba)
##################
from sklearn.calibration import CalibratedClassifierCV
calibrated_clf = CalibratedClassifierCV(xgboost_final_xcg, method='isotonic', cv=5, n_jobs=-1)
calibrated_clf.fit(X_train, y_train.values.ravel())
y_test_predict_proba = calibrated_clf.predict_proba(X_val)[:, 1]
fraction_of_positives1, mean_predicted_value1 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier1 = brier_score_loss(y_val, y_test_predict_proba)
####################
clf_sigmoid = CalibratedClassifierCV(xgboost_final_xcg, cv=5, method='sigmoid', n_jobs = -1)
clf_sigmoid.fit(X_train, y_train.values.ravel())
y_test_predict_proba = clf_sigmoid.predict_proba(X_val)[:, 1]
fraction_of_positives2, mean_predicted_value2 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier2 = brier_score_loss(y_val, y_test_predict_proba)
######################
plt.figure(dpi=300,figsize=(10, 6))
plt.rc('font',family='Times New Roman')
plt.plot(mean_predicted_value2, fraction_of_positives2, 's-', color='orange', label='Calibrated (Platt),Brier:0.0602')
plt.plot(mean_predicted_value0, fraction_of_positives0, 's-', label='Uncalibrated, Brier:0.0572')
plt.plot(mean_predicted_value1, fraction_of_positives1, 's-', color='red', label='Calibrated (Isotonic),Brier:0.0601')
plt.plot([0, 1], [0, 1], '--', color='black')
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.rcParams.update({'font.size':18})
plt.gca().legend()
plt.savefig('SR1_xg_xcg.pdf')
import pickle
Pkl_Filename = "save/SR_xgb_xcg_model.pkl"
with open(Pkl_Filename, 'wb') as file:
pickle.dump(xgboost_final_xcg, file)
###################################################Hyperparameter selection for XGB-All model.
col = ['WBC', 'NEU', 'LYM', 'MON', 'EOS', 'BAS', 'RBC',
'HGB', 'HCT', 'MCV', 'MCH', 'MCHC', 'RDW_SD', 'RDW_CV', 'PLT', 'PCT',
'MPV', 'PDW', 'P_LCR', 'IG', 'IG_p', 'NEUT', 'NEUT_p', 'NLR', 'LMR',
'PWR', 'PNR', 'PLR', 'SIII', 'SIRI', 'RCI', 'MON_p', 'BAS_p', 'NEU_p',
'EOS_p', 'LYM_p','diabetes', 'pneum', 'heart', 'sex', 'smoke', 'drink', 'smo_dri','age_cat']
col_xcg = ['WBC', 'NEU', 'LYM', 'MON', 'EOS', 'BAS', 'RBC',
'HGB', 'HCT', 'MCV', 'MCH', 'MCHC', 'RDW_SD', 'RDW_CV', 'PLT', 'PCT',
'MPV', 'PDW', 'P_LCR', 'IG', 'IG_p', 'NEUT', 'NEUT_p', 'NLR', 'LMR',
'PWR', 'PNR', 'PLR', 'SIII', 'SIRI', 'RCI', 'MON_p', 'BAS_p', 'NEU_p',
'EOS_p', 'LYM_p']
col_cat = ['diabetes', 'pneum', 'heart', 'sex', 'smoke', 'drink', 'smo_dri','age_cat']
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
from sklearn.model_selection import train_test_split
os.chdir(r'/home/changshu/python2022/huanhu_data/hypertension_final_code')
import pickle
X_train = pd.read_csv('X_train.csv')[col]
from sklearn.preprocessing import RobustScaler
scaler = RobustScaler()
X_train=scaler.fit_transform(X_train[col_xcg])
import pickle
# save the scaler
with open('robust_scaler_all.pkl', 'wb') as file:
pickle.dump(scaler, file)
#############################################
X_train = pd.read_csv('X_train.csv')
X_val = pd.read_csv('X_val.csv')
y_train = pd.read_csv('y_train.csv')
y_val = pd.read_csv('y_val.csv')
from sklearn.preprocessing import RobustScaler
import pickle
# Load the saved scaler
with open('robust_scaler_all.pkl', 'rb') as file:
scaler_loaded = pickle.load(file)
# Separate continuous and categorical variables
X_train_cont = X_train[col_xcg]
X_train_cat = X_train[col_cat]
# Standardize only continuous variables
X_train_cont = scaler_loaded.transform(X_train_cont)
# Transform the array back to dataframe and assign the column names
X_train_cont = pd.DataFrame(X_train_cont, columns=col_xcg).reset_index(drop=True)
# Concatenate continuous and categorical variables back into one dataframe
X_train = pd.concat([X_train_cont, X_train_cat], axis=1)
################################################
import xgboost as xgb
import optuna
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
from imblearn.over_sampling import SMOTENC
from imblearn.pipeline import Pipeline
cat_mask = [col in col_cat for col in X_train.columns]
def objective(trial):
param = {
'n_estimators': trial.suggest_int('n_estimators', 100, 600),
'max_depth': 6, #trial.suggest_int('max_depth', 2, 6),
'learning_rate': trial.suggest_float('learning_rate', 0.01, .1),
'subsample': trial.suggest_float('subsample', 0.50, 1),
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.50, 1),
'gamma': trial.suggest_int('gamma', 0, 10),
'eta': trial.suggest_float('eta', 0.007, 0.013),
'min_child_weight' : trial.suggest_int('min_child_weight', 1, 10),
'objective': 'binary:logistic',
'lambda': trial.suggest_float('lambda', 1e-3, 5.0),
'alpha': trial.suggest_float('alpha', 1e-3, 5.0)
}
gbm = xgb.XGBClassifier(**param)
# Create a pipeline that first applies SMOTENC and then fits the model
pipeline = Pipeline([
('smote', SMOTENC(categorical_features=cat_mask,random_state=42)),
('gbm', gbm)
])
cv_score = cross_val_score(pipeline, X_train, y_train, cv=10, scoring='balanced_accuracy').mean()
return cv_score
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=100)
best_params_ = study.best_params
########################################
from plotly.offline import plot, iplot, init_notebook_mode
fig = optuna.visualization.plot_optimization_history(study)
fig.layout.yaxis.titlefont.size = 30
fig.layout.yaxis.titlefont.size = 30
fig.layout.xaxis.titlefont.size = 30
fig.layout.yaxis.tickfont.size = 25
fig.layout.xaxis.tickfont.size = 25
fig.update_layout(font=dict(size=20))
plot(fig, filename='SR1_all_xg_full_plot11.html')
fig = optuna.visualization.plot_param_importances(study)
fig.layout.yaxis.titlefont.size = 30
fig.layout.yaxis.titlefont.size = 30
fig.layout.xaxis.titlefont.size = 30
fig.layout.yaxis.tickfont.size = 20
fig.layout.xaxis.tickfont.size = 25
fig.update_layout(font=dict(size=20))
plot(fig,filename='SR1_all_xg_full_plot22.html')
a = study.trials_dataframe()
from xgboost import XGBClassifier
from imblearn.over_sampling import SMOTENC
cat_features = [True if col in col_cat else False for col in X_train.columns]
# Create a SMOTENC instance
smote_nc = SMOTENC(categorical_features=cat_features, random_state=42)
# Fit and resample the data
X_train, y_train = smote_nc.fit_resample(X_train, y_train)
# Now use resampled data to fit the model
xgboost_model = XGBClassifier()
xgboost_final_xcg = xgboost_model.set_params(**best_params_).fit(X_train, y_train)
######
col = ['WBC', 'NEU', 'LYM', 'MON', 'EOS', 'BAS', 'RBC',
'HGB', 'HCT', 'MCV', 'MCH', 'MCHC', 'RDW_SD', 'RDW_CV', 'PLT', 'PCT',
'MPV', 'PDW', 'P_LCR', 'IG', 'IG_p', 'NEUT', 'NEUT_p', 'NLR', 'LMR',
'PWR', 'PNR', 'PLR', 'SIII', 'SIRI', 'RCI', 'MON_p', 'BAS_p', 'NEU_p',
'EOS_p', 'LYM_p','diabetes', 'pneum', 'heart', 'sex', 'smoke', 'drink', 'smo_dri','age_cat']
col_xcg = ['WBC', 'NEU', 'LYM', 'MON', 'EOS', 'BAS', 'RBC',
'HGB', 'HCT', 'MCV', 'MCH', 'MCHC', 'RDW_SD', 'RDW_CV', 'PLT', 'PCT',
'MPV', 'PDW', 'P_LCR', 'IG', 'IG_p', 'NEUT', 'NEUT_p', 'NLR', 'LMR',
'PWR', 'PNR', 'PLR', 'SIII', 'SIRI', 'RCI', 'MON_p', 'BAS_p', 'NEU_p',
'EOS_p', 'LYM_p']
col_cat = ['diabetes', 'pneum', 'heart', 'sex', 'smoke', 'drink', 'smo_dri','age_cat']
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import os
import re
import pickle
os.chdir(r'/home/changshu/python2022/huanhu_data/hypertension_final_code')
# Import val set
X_val = pd.read_csv('X_val.csv')
y_val = pd.read_csv("y_val.csv")
# Separate continuous and categorical variables
X_val_cont = X_val[col_xcg]
X_val_cat = X_val[col_cat]
# Load the saved scaler
with open('robust_scaler_all.pkl', 'rb') as file:
scaler_loaded = pickle.load(file)
# Standardize only continuous variables
X_val_cont = scaler_loaded.transform(X_val_cont)
# Transform the array back to dataframe and assign the column names
X_val_cont = pd.DataFrame(X_val_cont, columns=col_xcg).reset_index(drop=True)
# Concatenate continuous and categorical variables back into one dataframe
X_val = pd.concat([X_val_cont, X_val_cat], axis=1)
Pkl_Filename = "save/SR1_xgb_full_all_model.pkl"
# with open(Pkl_Filename, 'wb') as file:
# pickle.dump(xgboost_final_xcg, file)
with open(Pkl_Filename, 'rb') as file:
xgboost_final_xcg = pickle.load(file)
from sklearn.metrics import brier_score_loss, roc_auc_score
y_test_predict_proba = xgboost_final_xcg.predict_proba(X_val)[:, 1]
from sklearn.calibration import calibration_curve
fraction_of_positives0, mean_predicted_value0 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier0 = brier_score_loss(y_val, y_test_predict_proba)
##################
from sklearn.calibration import CalibratedClassifierCV
calibrated_clf = CalibratedClassifierCV(xgboost_final_xcg, method='isotonic', cv=5, n_jobs=-1)
calibrated_clf.fit(X_train, y_train.values.ravel())
y_test_predict_proba = calibrated_clf.predict_proba(X_val)[:, 1]
fraction_of_positives1, mean_predicted_value1 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier1 = brier_score_loss(y_val, y_test_predict_proba)
####################
clf_sigmoid = CalibratedClassifierCV(xgboost_final_xcg, cv=5, method='sigmoid', n_jobs = -1)
clf_sigmoid.fit(X_train, y_train.values.ravel())
y_test_predict_proba = clf_sigmoid.predict_proba(X_val)[:, 1]
fraction_of_positives2, mean_predicted_value2 = calibration_curve(y_val, y_test_predict_proba, n_bins=10)
brier2 = brier_score_loss(y_val, y_test_predict_proba)
######################
plt.figure(dpi=300,figsize=(10, 6))
plt.rc('font',family='Times New Roman')
plt.plot(mean_predicted_value2, fraction_of_positives2, 's-', color='orange', label='Calibrated (Platt),Brier:0.0573')
plt.plot(mean_predicted_value0, fraction_of_positives0, 's-', label='Uncalibrated, Brier:0.0542')
plt.plot(mean_predicted_value1, fraction_of_positives1, 's-', color='red', label='Calibrated (Isotonic),Brier:0.0552')
plt.plot([0, 1], [0, 1], '--', color='black')
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.rcParams.update({'font.size':18})
plt.gca().legend()
plt.savefig('SR1_xg_full_all.pdf')
import pickle
Pkl_Filename = "save/SR1_xgb_full_all_model.pkl"
with open(Pkl_Filename, 'wb') as file:
pickle.dump(xgboost_final_xcg, file)