forked from maxencefaldor/Leniabreeder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_aurora.py
399 lines (329 loc) · 14.2 KB
/
main_aurora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import time
import pickle
from functools import partial
import logging
logger = logging.getLogger(__name__)
import jax
import jax.numpy as jnp
from flax.training.train_state import TrainState
import optax
from lenia.lenia import ConfigLenia, Lenia
from vae import VAE
from vae import loss as loss_vae
from qdax.core.aurora import AURORA
from qdax.core.emitters.mutation_operators import isoline_variation
from qdax.core.emitters.standard_emitters import MixingEmitter
from qdax.utils.metrics import CSVLogger, default_qd_metrics
from common import get_metric, repertoire_variance
import hydra
from omegaconf import DictConfig
@hydra.main(version_base=None, config_path="configs/", config_name="aurora")
def main(config: DictConfig) -> None:
logging.info("Starting AURORA...")
# Init a random key
key = jax.random.PRNGKey(config.seed)
# Lenia
logging.info("Initializing Lenia...")
config_lenia = ConfigLenia(
# Init pattern
pattern_id=config.pattern_id,
# Simulation
world_size=config.world_size,
world_scale=config.world_scale,
n_step=config.n_step,
# Genotype
n_params_size=config.n_params_size,
n_cells_size=config.n_cells_size,
)
lenia = Lenia(config_lenia)
# Load pattern
init_carry, init_genotype, other_asset = lenia.load_pattern(lenia.pattern)
# VAE
key, subkey_1, subkey_2 = jax.random.split(key, 3)
phenotype_fake = jnp.zeros((config.phenotype_size, config.phenotype_size, lenia.n_channel))
vae = VAE(img_shape=phenotype_fake.shape, latent_size=config.qd.hidden_size, features=config.qd.features)
params = vae.init(subkey_1, phenotype_fake, subkey_2)
params_count = sum(x.size for x in jax.tree_util.tree_leaves(params))
logging.info(f"VAE params count: {params_count}")
# Create train state
train_steps_per_epoch = config.qd.repertoire_size // config.qd.ae_batch_size
train_steps_total = config.qd.n_generations * config.qd.train_ratio * train_steps_per_epoch
learning_rate_fn = optax.linear_schedule(
init_value=config.qd.lr_init_value,
end_value=config.qd.lr_init_value,
transition_steps=config.qd.lr_transition_steps,
transition_begin=config.qd.lr_transition_begin,
)
tx = optax.chain(
optax.clip_by_global_norm(1.0),
optax.adam(learning_rate_fn),
)
train_state = TrainState.create(apply_fn=vae.apply, params=params, tx=tx)
# Define the scoring function
def latent_mean(observation, train_state, key):
latents = vae.apply(train_state.params, observation.phenotype[-config.qd.n_keep:], key, method=vae.encode)
return jnp.mean(latents, axis=-2)
def latent_variance(observation, train_state, key):
latents = vae.apply(train_state.params, observation.phenotype[-config.qd.n_keep:], key, method=vae.encode)
latent_mean = jnp.mean(latents, axis=-2)
return -jnp.mean(jnp.linalg.norm(latents - latent_mean[..., None, :], axis=-1), axis=-1)
def calculate_average_mass(repertoire):
"""Calculate average mass across valid solutions in repertoire"""
valid_solutions = repertoire.fitnesses != -jnp.inf
valid_masses = repertoire.observations.stats.mass[valid_solutions]
valid_masses = jnp.mean(valid_masses, axis=1) # Average across timesteps for each solution
return jnp.mean(valid_masses) if valid_masses.size > 0 else 0.0
def compute_domination_count(objectives, archive_objectives):
"""Count how many archive solutions dominate this solution"""
# A solution dominates another if it's better in at least one objective
# and not worse in all others
dominates = jnp.all(archive_objectives >= objectives, axis=1) & \
jnp.any(archive_objectives > objectives, axis=1)
return jnp.sum(dominates)
def compute_sparsity(descriptors, archive_descriptors, sigma=0.5):
"""
Compute sparsity score based on distance to archive solutions in descriptor space.
Higher score = more sparse/novel area of descriptor space.
Args:
descriptors: Descriptors of current solution
archive_descriptors: Descriptors of solutions in archive
sigma: Kernel width for density estimation
"""
# Compute distances to all archive solutions
distances = jnp.linalg.norm(
descriptors[:, None] - archive_descriptors[None, :],
axis=-1
)
# Convert distances to density estimate using RBF kernel
density = jnp.sum(jnp.exp(-distances**2 / (2 * sigma**2)), axis=-1)
# Return negative density (higher = more sparse)
return -density
def pareto_fitness(observation, train_state, key, repertoire):
"""Calculate fitness using Pareto-based comparison against archive"""
# Calculate individual objectives
if repertoire is None or repertoire.fitnesses.size == 0:
return latent_variance(observation, train_state, key)
latent_mean = latent_mean(observation, train_state, key)
objectives = jnp.array([
latent_variance(observation, train_state, key), # homeostasis
jnp.linalg.norm( # novelty
latent_mean -
latent_mean.mean(axis=0),
axis=-1
),
compute_sparsity( # sparsity in descriptor space
descriptor_fn(observation, train_state, key),
descriptor_fn(repertoire.observations, train_state, key)
)
])
# Get archive objectives
archive_objectives = jnp.stack([
latent_variance(repertoire.observations, train_state, key),
jnp.linalg.norm(
latent_mean(repertoire.observations, train_state, key) -
latent_mean(repertoire.observations, train_state, key).mean(axis=0),
axis=-1
),
compute_sparsity( # sparsity in descriptor space
descriptor_fn(observation, train_state, key),
descriptor_fn(repertoire.observations, train_state, key)
)
])
# Calculate domination-based fitness
domination_count = compute_domination_count(objectives, archive_objectives)
# Return negative domination count (fewer dominating solutions = better fitness)
return -domination_count
def fitness_fn(observation, train_state, key, repertoire=None):
# if config.qd.fitness == "unsupervised":
# fitness = latent_variance(observation, train_state, key)
fitness = pareto_fitness(observation, train_state, key, repertoire)
# else:
# fitness = get_metric(observation, config.qd.fitness, config.qd.n_keep)
# assert fitness.size == 1
# fitness = jnp.squeeze(fitness)
# if config.qd.secondary_fitness:
# secondary_fitness = get_metric(observation, config.qd.secondary_fitness, config.qd.n_keep)
# assert secondary_fitness.size == 1
# secondary_fitness = jnp.squeeze(secondary_fitness)
# fitness += config.qd.secondary_fitness_weight * secondary_fitness
failed = jnp.logical_or(observation.stats.is_empty.any(), observation.stats.is_full.any())
failed = jnp.logical_or(failed, observation.stats.is_spread.any())
fitness = jnp.where(failed, -jnp.inf, fitness)
return fitness
def descriptor_fn(observation, train_state, key):
descriptor_unsupervised = latent_mean(observation, train_state, key)
return descriptor_unsupervised
def evaluate(genotype, train_state, key, repertoire=None):
carry = lenia.express_genotype(init_carry, genotype)
lenia_step = partial(lenia.step, phenotype_size=config.phenotype_size, center_phenotype=config.center_phenotype, record_phenotype=config.record_phenotype)
carry, accum = jax.lax.scan(lenia_step, init=carry, xs=jnp.arange(lenia._config.n_step))
fitness = fitness_fn(accum, train_state, key, repertoire)
descriptor = descriptor_fn(accum, train_state, key)
accum = jax.tree.map(lambda x: x[-config.qd.n_keep_ae:], accum)
return fitness, descriptor, accum
def scoring_fn(genotypes, train_state, key, repertoire=None):
batch_size = jax.tree.leaves(genotypes)[0].shape[0]
key, *keys = jax.random.split(key, batch_size+1)
fitnesses, descriptors, observations = jax.vmap(evaluate, in_axes=(0, None, 0, None))(genotypes, train_state, jnp.array(keys), repertoire)
fitnesses_nan = jnp.isnan(fitnesses)
descriptors_nan = jnp.any(jnp.isnan(descriptors), axis=-1)
fitnesses = jnp.where(fitnesses_nan | descriptors_nan, -jnp.inf, fitnesses)
return fitnesses, descriptors, {"observations": observations}, key
# Define a metrics function
metrics_fn = partial(default_qd_metrics, qd_offset=0.)
# Define emitter
variation_fn = partial(isoline_variation, iso_sigma=config.qd.iso_sigma, line_sigma=config.qd.line_sigma)
mixing_emitter = MixingEmitter(
mutation_fn=None,
variation_fn=variation_fn,
variation_percentage=1.0,
batch_size=config.qd.batch_size
)
# Train
if config.qd.use_data_augmentation:
def data_augmentation(batch, key):
# Flip
batch_1, batch_2 = jnp.split(batch, 2)
batch_2 = jnp.flip(batch_2, axis=1)
batch = jnp.concatenate([batch_1, batch_2], axis=0)
batch = jax.random.permutation(key, batch)
# Rotate
batch_1, batch_2, batch_3, batch_4 = jnp.split(batch, 4)
batch_1 = jax.vmap(lambda x: jnp.rot90(x, k=0, axes=(0, 1)))(batch_1)
batch_2 = jax.vmap(lambda x: jnp.rot90(x, k=1, axes=(0, 1)))(batch_2)
batch_3 = jax.vmap(lambda x: jnp.rot90(x, k=2, axes=(0, 1)))(batch_3)
batch_4 = jax.vmap(lambda x: jnp.rot90(x, k=3, axes=(0, 1)))(batch_4)
batch = jnp.concatenate([batch_1, batch_2, batch_3, batch_4], axis=0)
return batch
else:
def data_augmentation(batch, key):
return batch
@partial(jax.jit, static_argnames=("learning_rate_fn",))
def train_step(train_state, batch, key, learning_rate_fn):
def loss_fn(params):
logits, mean, logvar = train_state.apply_fn(params, batch, key)
return loss_vae(logits, batch, mean, logvar)
(loss, aux), grads = jax.value_and_grad(loss_fn, has_aux=True)(train_state.params)
train_state = train_state.apply_gradients(grads=grads)
learning_rate = learning_rate_fn(train_state.step)
return train_state, {**aux, "learning_rate": learning_rate}
def train_epoch(train_state, repertoire, key):
steps_per_epoch = repertoire.size // config.qd.ae_batch_size
key, subkey = jax.random.split(key)
valid = repertoire.fitnesses != -jnp.inf
indices = jax.random.choice(subkey, jnp.arange(repertoire.size), shape=(repertoire.size,), p=valid)
indices = indices[:steps_per_epoch * config.qd.ae_batch_size]
indices = indices.reshape((steps_per_epoch, config.qd.ae_batch_size))
def scan_train_step(carry, x):
train_state = carry
batch_indices, key = x
subkey_1, subkey_2, subkey_3 = jax.random.split(key, 3)
step_indices = jax.random.randint(subkey_1, shape=(config.qd.ae_batch_size,), minval=0, maxval=config.qd.n_keep_ae)
batch = repertoire.observations.phenotype[batch_indices, step_indices]
batch = data_augmentation(batch, subkey_2)
train_state, metrics = train_step(train_state, batch, subkey_3, learning_rate_fn)
return train_state, metrics
keys = jax.random.split(key, steps_per_epoch)
train_state, metrics = jax.lax.scan(
scan_train_step,
train_state,
(indices, keys),
length=steps_per_epoch,
)
return train_state, metrics
def train_fn(key, repertoire, train_state):
def scan_train_epoch(carry, x):
train_state = carry
key = x
train_state, metrics = train_epoch(train_state, repertoire, key)
return train_state, metrics
keys = jax.random.split(key, config.qd.train_ratio)
train_state, metrics = jax.lax.scan(
scan_train_epoch,
train_state,
keys,
length=config.qd.train_ratio,
)
return train_state, metrics
def fitness_fn_wrapper(obs, ts, key):
"""Wrapper to make fitness function signature consistent for AURORA"""
return fitness_fn(obs, ts, key, None)
# Init AURORA
aurora = AURORA(
emitter=mixing_emitter,
scoring_fn=scoring_fn,
fitness_fn=fitness_fn_wrapper,
descriptor_fn=descriptor_fn,
train_fn=train_fn,
metrics_fn=metrics_fn,
)
# Init step of the aurora algorithm
logging.info("Initializing AURORA...")
key, subkey = jax.random.split(key)
init_genotypes = init_genotype[None, ...].repeat(config.qd.batch_size, axis=0)
init_genotypes += jax.random.normal(subkey, shape=(config.qd.batch_size, lenia.n_gene)) * config.qd.iso_sigma
repertoire, emitter_state, key = aurora.init(
init_genotypes,
train_state,
config.qd.repertoire_size,
key,
)
metrics = dict.fromkeys(["generation", "qd_score", "coverage", "max_fitness", "loss", "recon_loss", "kld_loss", "learning_rate", "n_elites", "variance", "time", "avg_mass"], jnp.array([]))
csv_logger = CSVLogger("./log.csv", header=list(metrics.keys()))
# Main loop
logging.info("Starting main loop...")
def aurora_scan(carry, unused):
repertoire, train_state, key = carry
# AURORA update
repertoire, _, metrics, key = aurora.update(
repertoire,
None,
key,
train_state,
)
# AE training
key, subkey = jax.random.split(key)
repertoire, train_state, metrics_ae = aurora.train(
repertoire, train_state, subkey
)
return (repertoire, train_state, key), (metrics, metrics_ae)
for generation in range(0, config.qd.n_generations, config.qd.log_interval):
start_time = time.time()
(repertoire, train_state, key), (current_metrics, current_metrics_ae) = jax.lax.scan(
aurora_scan,
(repertoire, train_state, key),
(),
length=config.qd.log_interval,
)
timelapse = time.time() - start_time
# Metrics
current_metrics["generation"] = jnp.arange(1+generation, 1+generation+config.qd.log_interval, dtype=jnp.int32)
current_metrics["n_elites"] = jnp.sum(current_metrics["is_offspring_added"], axis=-1)
del current_metrics["is_offspring_added"]
variance = repertoire_variance(repertoire)
current_metrics["variance"] = jnp.repeat(variance, config.qd.log_interval)
current_metrics["time"] = jnp.repeat(timelapse, config.qd.log_interval)
avg_mass = calculate_average_mass(repertoire)
current_metrics["avg_mass"] = jnp.repeat(avg_mass, config.qd.log_interval)
current_metrics_ae = jax.tree_util.tree_map(lambda metric: jnp.repeat(metric[-1], config.qd.log_interval), current_metrics_ae)
current_metrics |= current_metrics_ae
metrics = jax.tree_util.tree_map(lambda metric, current_metric: jnp.concatenate([metric, current_metric], axis=0), metrics, current_metrics)
# Log
log_metrics = jax.tree_util.tree_map(lambda metric: metric[-1], metrics) # log last value
csv_logger.log(log_metrics)
logging.info(log_metrics)
# Metrics
logging.info("Saving metrics...")
with open("./metrics.pickle", "wb") as metrics_file:
pickle.dump(metrics, metrics_file)
# Repertoire
logging.info("Saving repertoire...")
os.mkdir("./repertoire/")
repertoire.replace(observations=jnp.nan).save(path="./repertoire/")
# Autoencoder
logging.info("Saving autoencoder params...")
with open("./params.pickle", "wb") as params_file:
pickle.dump(train_state.params, params_file)
if __name__ == "__main__":
main()