-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
215 lines (174 loc) · 9.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import tensorflow as tf
from chatdesk.deep_classifier import DeepLSTMClassifier
from chatdesk.data_helpers import DataHelper
import time
import datetime
import os
from sklearn.model_selection import train_test_split
import shutil
"""load data"""
data_helper = DataHelper(filepath_input="./Airline-Tags (1).csv", filepath_glove='./glove.twitter.27B.100d.txt')
x, y_tag, y_sentiment, vocabulary, vocabulary_inv, sequence_length, embeddings = data_helper.load_data()
"""split the original dataset into train and test sets"""
x_, x_test, y_, y_test = train_test_split(x, list(zip(y_tag, y_sentiment)), test_size=0.1, random_state=42)
"""split the train set into train and dev sets"""
x_train, x_dev, y_train, y_dev = train_test_split(x_, y_, test_size=0.3)
y_train_tag, y_train_sentiment = zip(*y_train)
y_dev_tag, y_dev_sentiment = zip(*y_dev)
y_test_tag, y_test_sentiment = zip(*y_test)
"""model params"""
trainable_embeddings = True
dropout_keep_prob = 0.4
batch_size = 1024
num_epochs = 20
evaluate_every = len(y_train_tag) // batch_size
checkpoint_every = 100
timestamp = str(int(time.time()))
trained_dir = './trained_results_' + timestamp + '/'
if os.path.exists(trained_dir):
shutil.rmtree(trained_dir)
os.makedirs(trained_dir)
with tf.Graph().as_default():
sess = tf.Session()
print("started session")
with sess.as_default():
deepLSTMModel = DeepLSTMClassifier(
seq_length=sequence_length,
vocab_size=len(vocabulary),
embedding_dim=100,
n_hidden=50,
n_layers=1,
dropout_keep_prob=dropout_keep_prob,
batch_size=batch_size,
trainable_embeddings=trainable_embeddings,
n_tags=y_tag.shape[1],
n_sentiments=y_sentiment.shape[1],
l2_reg_lambda=0.2
)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(1e-3)
print("Initialized DeepLSTMModel")
grads_and_vars = optimizer.compute_gradients(deepLSTMModel.loss)
tr_op_set = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
print("Defined training_ops")
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.summary.merge(grad_summaries)
print("Defined gradient summaries")
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print("Writing to {}\n".format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.summary.scalar("loss", deepLSTMModel.loss)
acc_tag_summary = tf.summary.scalar("accuracy_tag", deepLSTMModel.accuracy_tag)
acc_sentiment_summary = tf.summary.scalar("accuracy_sentiment", deepLSTMModel.accuracy_sentiment)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, acc_tag_summary, acc_sentiment_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary, acc_tag_summary, acc_sentiment_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = './checkpoints_' + timestamp + '/'
if os.path.exists(checkpoint_dir):
shutil.rmtree(checkpoint_dir)
os.makedirs(checkpoint_dir)
checkpoint_prefix = os.path.join(checkpoint_dir, 'model')
def train_step(x_batch, y_tag_batch, y_sentiment_batch):
feed_dict = {
deepLSTMModel.input_x: x_batch,
deepLSTMModel.input_y_tag: y_tag_batch,
deepLSTMModel.input_y_sentiment: y_sentiment_batch,
}
_, step, loss, accuracy_tag, accuracy_sentiment, summaries = sess.run(
[tr_op_set, global_step, deepLSTMModel.loss, deepLSTMModel.accuracy_tag, deepLSTMModel.accuracy_sentiment,
train_summary_op], feed_dict)
time_str = datetime.datetime.now().isoformat()
train_summary_writer.add_summary(summaries, step)
return loss, accuracy_tag, accuracy_sentiment, time_str
def dev_step(x_batch, y_tag_batch, y_sentiment_batch):
feed_dict = {
deepLSTMModel.input_x: x_batch,
deepLSTMModel.input_y_tag: y_tag_batch,
deepLSTMModel.input_y_sentiment: y_sentiment_batch,
}
step, loss, num_correct_tag, num_correct_sentiment, summaries = sess.run(
[global_step, deepLSTMModel.loss, deepLSTMModel.num_correct_tag, deepLSTMModel.num_correct_sentiment,
dev_summary_op], feed_dict)
time_str = datetime.datetime.now().isoformat()
dev_summary_writer.add_summary(summaries, step)
return loss, num_correct_tag, num_correct_sentiment, time_str
print("Initialize all variables")
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
sess.run(deepLSTMModel.W.assign(embeddings))
# Generate batches
train_batches = data_helper.batch_iter(list(zip(x_train, y_train_tag, y_train_sentiment)), batch_size, num_epochs)
best_accuracy_tag, best_accuracy_sentiment, best_accuracy = 0.0, 0.0, 0
for train_batch in train_batches:
x_train_batch, y_train_tag_batch, y_train_sentiment_batch = zip(*train_batch)
loss, accuracy_tag, accuracy_sentiment, time_str = train_step(x_train_batch, y_train_tag_batch, y_train_sentiment_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % evaluate_every == 0:
print(
"TRAIN {}: step {}, loss {:g}, acc_tag {:g}, acc_sentiment {:g}".format(time_str, current_step, loss,
accuracy_tag,
accuracy_sentiment))
dev_batches = data_helper.batch_iter(list(zip(x_dev, y_dev_tag, y_dev_sentiment)), batch_size, 1)
total_dev_correct_tag, total_dev_correct_sentiment = 0, 0
for dev_batch in dev_batches:
x_dev_batch, y_dev_tag_batch, y_dev_sentiment_batch = zip(*dev_batch)
loss, num_dev_correct_tag, num_dev_correct_sentiment, time_str = dev_step(x_dev_batch,
y_dev_tag_batch,
y_dev_sentiment_batch)
total_dev_correct_tag += num_dev_correct_tag
total_dev_correct_sentiment += num_dev_correct_sentiment
dev_accuracy_tag = float(total_dev_correct_tag) / len(y_dev_tag)
dev_accuracy_sentiment = float(total_dev_correct_sentiment) / len(y_dev_sentiment)
print(
"EVAL {}: loss {:g}, acc_tag {:g}, acc_sentiment {:g}".format(time_str, loss,
dev_accuracy_tag,
dev_accuracy_sentiment))
print("")
"""Save the model if it is the best based on accuracy on dev set"""
if dev_accuracy_tag >= best_accuracy_tag:
best_accuracy_tag, best_at_step_tag = dev_accuracy_tag, current_step
path = saver.save(sess, checkpoint_prefix + "_tag", global_step=current_step)
print('Saved model at {} at step {}'.format(path, best_at_step_tag))
print('Best tag accuracy is {} at step {}'.format(best_accuracy_tag, best_at_step_tag))
print()
if dev_accuracy_sentiment >= best_accuracy_sentiment:
best_accuracy_sentiment, best_at_step_sentiment = dev_accuracy_sentiment, current_step
path = saver.save(sess, checkpoint_prefix + "_sentiment", global_step=current_step)
print('Saved model at {} at step {}'.format(path, best_at_step_sentiment))
print('Best sentiment accuracy is {} at step {}'.format(best_accuracy_sentiment, best_at_step_sentiment))
print()
# Save the model files to trained_dir.
saver.save(sess, trained_dir + "best_model.ckpt")
# Evaluate x_test and y_test
print(checkpoint_prefix + "_tag" + '-' + str(best_at_step_sentiment))
saver.restore(sess, checkpoint_prefix + "_tag" + '-' + str(best_at_step_sentiment))
"""Predict x_test (batch by batch)"""
test_batches = data_helper.batch_iter(list(zip(x_test, y_test_tag, y_test_sentiment)), batch_size, 1)
total_test_correct_tag, total_test_correct_sentiment = 0, 0
for test_batch in test_batches:
x_test_batch, y_test_tag_batch, y_test_sentiment_batch = zip(*test_batch)
loss, num_test_correct_tag, num_test_correct_sentiment, time_str = dev_step(x_test_batch, y_test_tag_batch, y_test_sentiment_batch)
total_test_correct_tag += num_test_correct_tag
total_test_correct_sentiment += num_test_correct_sentiment
test_accuracy_tag = float(total_test_correct_tag) / len(y_test_tag)
test_accuracy_sentiment = float(total_test_correct_sentiment) / len(y_test_sentiment)
print(
"TEST {}: loss {:g}, acc_tag {:g}, acc_sentiment {:g}".format(time_str, loss,
test_accuracy_tag,
test_accuracy_sentiment))