-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathinference.py
41 lines (35 loc) · 1.21 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
import sys
from torchvision import models
from PIL import Image
from pprint import pprint
import time
# net = models.squeezenet1_0(pretrained=True)
net = models.shufflenet_v2_x1_0(pretrained=True)
# net = models.mobilenet_v2(pretrained=True)
net.eval()
with open('imagenet_classes.txt') as f:
labels = [line.strip() for line in f.readlines()]
from torchvision import transforms
transform = transforms.Compose([ #[1]
transforms.Resize(256), #[2]
transforms.CenterCrop(224), #[3]
transforms.ToTensor(), #[4]
transforms.Normalize( #[5]
mean=[0.485, 0.456, 0.406], #[6]
std=[0.229, 0.224, 0.225] #[7]
)])
def infer(path):
img = Image.open(path)
img_t = transform(img)
batch_t = torch.unsqueeze(img_t, 0)
out = net(batch_t)
percentage = torch.nn.functional.softmax(out, dim=1)[0] * 100
_, indices = torch.sort(out, descending=True)
pprint([(labels[idx], percentage[idx].item()) for idx in indices[0][:5]])
if __name__ == '__main__':
for _ in range(10):
start = time.time()
infer(sys.argv[1])
end = time.time()
print(end - start)