Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

习题10-3 #72

Open
simo-an opened this issue Jan 25, 2022 · 0 comments
Open

习题10-3 #72

simo-an opened this issue Jan 25, 2022 · 0 comments

Comments

@simo-an
Copy link

simo-an commented Jan 25, 2022

习题10-3 分析自训练和EM算法之间的联系

解答

  1. 什么是自训练
    首先使用标注数据训练一个模型 => 使用该模型来预测无标签样本的标签 => 将置信度较高的样本连同预测的标签加入到训练集 => 重新训练模型 => ...

不断循环上面的过程。

  1. EM算法简介
    EM算法分为两步,即 E步和M步:
  • E 步:当参数 𝜃 已知 => 根据训练数据推断出最优隐变量的值
  • M步:当隐变量已知 => 对参数 𝜃 做极大似然估计

这两步不断重复, 直到收敛到某个局部最优解.

  1. 自训练和EM算法之间的联系
    自训练和密度估计中 EM 算法都是通过不断地迭代来提高模型能力
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant