forked from scylladb/scylla-cluster-tests
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperformance_regression_gradual_grow_throughput.py
226 lines (190 loc) · 10.8 KB
/
performance_regression_gradual_grow_throughput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
from enum import Enum
from collections import defaultdict
import json
from performance_regression_test import PerformanceRegressionTest
from sdcm.results_analyze import ThroughputLatencyGradualGrowPayloadPerformanceAnalyzer
class CSPopulateDistribution(Enum):
GAUSS = "gauss"
UNIFORM = "uniform"
class PerformanceRegressionGradualGrowThroughutTest(PerformanceRegressionTest): # pylint: disable=too-many-instance-attributes
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# all parameters were taken from scylla-stress-orch repo
# Planned data size is 3 TB in total: 1tb per node
self.NUM_THREADS = 500 # pylint: disable=invalid-name
self.CLUSTER_SIZE = self.params.get("n_db_nodes") # pylint: disable=invalid-name
self.REPLICATION_FACTOR = 3 # pylint: disable=invalid-name
# Planned data size is 3 TB in total: 1tb per node
self.DATASET_SIZE = 3000 * 1024 * 1024 * 1024 # pylint: disable=invalid-name
# expected row size (was calculated by dev team ~313 bytes)
self.ROW_SIZE_BYTES = 210 * 1024 * 1024 * 1024 / 720_000_000 # pylint: disable=invalid-name
self.ROW_COUNT = int(self.DATASET_SIZE / self.ROW_SIZE_BYTES / # pylint: disable=invalid-name
self.REPLICATION_FACTOR)
# How many standard deviations should span the cluster's memory
self.CONFIDENCE = 6 # pylint: disable=invalid-name
# intance i3.4xlarge
self.INSTANCE_MEMORY_GB = 122 # pylint: disable=invalid-name
self.GAUSS_CENTER = self.ROW_COUNT // 2 # pylint: disable=invalid-name
self.GAUSS_SIGMA = int(self.INSTANCE_MEMORY_GB * self.CLUSTER_SIZE * 1024 * 1024 * # pylint: disable=invalid-name
1024 // (self.CONFIDENCE * self.ROW_SIZE_BYTES * self.REPLICATION_FACTOR))
self.MAX_95TH_LATENCY = 20.0 # pylint: disable=invalid-name
self.MAX_99TH_LATENCY = 400.0 # pylint: disable=invalid-name
def test_mixed_gradual_increase_load(self): # pylint: disable=too-many-locals
"""
Test steps:
1. Run a write workload as a preparation
2. Run a mixed workload with gradual increase load
"""
self._base_test_workflow(cs_cmd_tmpl=self.params.get('stress_cmd_m'),
test_name="Test 'mixed: read:50%,write:50%'")
def test_write_gradual_increase_load(self): # pylint: disable=too-many-locals
"""
Test steps:
1. Run a write workload as a preparation
2. Run a write workload with gradual increase load
"""
self._base_test_workflow(cs_cmd_tmpl=self.params.get('stress_cmd_w'),
test_name="Test 'write 100%'")
def test_read_gradual_increase_load(self): # pylint: disable=too-many-locals
"""
Test steps:
1. Run a write workload as a preparation
2. Run a read workload with gradual increase load
"""
self._base_test_workflow(cs_cmd_tmpl=self.params.get('stress_cmd_r'),
test_name="Test 'read 100%'")
def _base_test_workflow(self, cs_cmd_tmpl, test_name):
stress_num = 1
num_loaders = len(self.loaders.nodes)
self.run_fstrim_on_all_db_nodes()
# run a write workload as a preparation
compaction_strategy = self.params.get('compaction_strategy')
self.preload_data(compaction_strategy=compaction_strategy)
self.wait_no_compactions_running(n=400, sleep_time=120)
self.run_fstrim_on_all_db_nodes()
# self.disable_autocompaction_on_all_nodes()
self.run_gradual_increase_load(stress_cmd_templ=cs_cmd_tmpl,
start_ops=self.start_ops,
throttle_step=self.throttle_step,
max_ops=self.max_ops,
stress_num=stress_num,
num_loaders=num_loaders,
compaction_strategy=compaction_strategy,
test_name=test_name)
def preload_data(self, compaction_strategy=None):
prepare_write_tmpl: str = self.params.get("prepare_write_cmd")
num_of_loaders: int = self.params.get("n_loaders")
row_count_per_loader: int = self.ROW_COUNT // num_of_loaders
range_points = [1]
for i in range(num_of_loaders):
range_points.append(range_points[-1] + row_count_per_loader)
range_points[-1] = self.ROW_COUNT
population_commands = []
for i in range(len(range_points) - 1):
cmd = prepare_write_tmpl.replace(
"$ROW_NUMBER", f"{range_points[i + 1] - range_points[i] + 1}").replace(
"$SEQUENCE", f"{range_points[i]}..{range_points[i + 1]}")
population_commands.append(cmd)
self.log.info("Population c-s commands: %s", population_commands)
# Check if it should be round_robin across loaders
params = {}
stress_queue = []
if self.params.get('round_robin'):
self.log.debug('Populating data using round_robin')
params.update({'stress_num': 1, 'round_robin': True})
if compaction_strategy:
self.log.debug('Next compaction strategy will be used %s', compaction_strategy)
params['compaction_strategy'] = compaction_strategy
for stress_cmd in population_commands:
params.update({'stress_cmd': stress_cmd})
# Run all stress commands
params.update(dict(stats_aggregate_cmds=False))
self.log.debug('RUNNING stress cmd: {}'.format(stress_cmd))
stress_queue.append(self.run_stress_thread(**params))
for stress in stress_queue:
self.get_stress_results(queue=stress, store_results=False)
self.log.info("Dataset has been populated")
# pylint: disable=too-many-arguments,too-many-locals
def run_gradual_increase_load(self, stress_cmd_templ,
start_ops, max_ops, throttle_step,
stress_num, num_loaders, compaction_strategy, test_name):
self.warmup_cache(compaction_strategy)
total_summary = []
cs_popuplation_distribution = self.get_cs_distribution()
base_stress_cmd = stress_cmd_templ[0].replace("$DIST_PARAMS", cs_popuplation_distribution)
for current_ops in range(start_ops, max_ops + throttle_step, throttle_step):
self.log.info("Run cs command with rate: %s Kops", current_ops)
current_throttle = current_ops // (num_loaders * stress_num)
stress_cmd = base_stress_cmd.replace("$threads", f"{self.NUM_THREADS}").replace(
"$throttle", f"{current_throttle}")
stress_queue = self.run_stress_thread(stress_cmd=stress_cmd, stress_num=stress_num,
compaction_strategy=compaction_strategy, stats_aggregate_cmds=False)
results = self.get_stress_results(queue=stress_queue, store_results=False)
self.log.debug("All c-s results: %s", results)
summary_result = self._calculate_average_latency(results)
summary_result["ops"] = current_ops
self.log.debug("C-S results for ops: %s. \n Results: \n %s", current_ops, summary_result)
total_summary.append(summary_result)
if (summary_result["latency 95th percentile"] > self.MAX_95TH_LATENCY or
summary_result["latency 99th percentile"] > self.MAX_99TH_LATENCY):
self.log.warning("Latency 95th percentile is large that %d", self.MAX_95TH_LATENCY)
break
total_summary_json = json.dumps(total_summary, indent=4, separators=(", ", ": "))
self.log.debug("---------------------------------")
self.log.debug("Final table with results: \n %s", total_summary_json)
self.log.debug("---------------------------------")
filename = f"{self.logdir}/result_gradual_increase.log"
with open(filename, "w", encoding="utf-8") as res_file:
res_file.write(total_summary_json)
screenshots = self.monitors.get_grafana_screenshots(self.monitors.nodes[0], self.start_time)
setup_details = {
"test_id": self.test_id,
"scylla_version": self.db_cluster.nodes[0].scylla_version_detailed,
"num_loaders": len(self.loaders.nodes),
"cluster_size": len(self.db_cluster.nodes),
"db_instance_type": self.params.get("instance_type_db"),
"loader_instance_type": self.params.get("instance_type_loader"),
"scylladb_ami": self.params.get("ami_id_db_scylla"),
"loader_ami": self.params.get("ami_id_loader"),
"start_time": self.start_time,
"screenshots": screenshots,
"job_url": os.environ.get("BUILD_URL"),
"shard_aware_driver": self.is_shard_awareness_driver,
}
perf_analyzer = ThroughputLatencyGradualGrowPayloadPerformanceAnalyzer(
es_index=self._test_index,
es_doc_type=self._es_doc_type,
email_recipients=self.params.get('email_recipients'))
perf_analyzer.check_regression(test_name=test_name, test_results=total_summary, test_details=setup_details)
def get_cs_distribution(self):
popuplation_distribution = CSPopulateDistribution(self.params.get("cs_populating_distribution"))
if popuplation_distribution == CSPopulateDistribution.GAUSS:
return f"GAUSSIAN(1..{self.ROW_COUNT},{self.GAUSS_CENTER},{self.GAUSS_SIGMA})"
elif popuplation_distribution == CSPopulateDistribution.UNIFORM:
return f"UNIFORM(1..{self.ROW_COUNT})"
else:
self.log.error("Unsupported cs population distribution")
return ""
@staticmethod
def _calculate_average_latency(results):
status = defaultdict(float).fromkeys(results[0].keys(), 0.0)
for result in results:
for key in status:
try:
status[key] += float(result.get(key, 0.0))
except ValueError:
continue
for key in status:
status[key] = round(status[key] / len(results), 2)
return status
def warmup_cache(self, compaction_strategy):
cmd = f"cassandra-stress read no-warmup cl=QUORUM duration=180m -pop 'dist={self.get_cs_distribution()}' -mode native cql3 -rate 'threads=500 throttle=35000/s'" # pylint: disable=line-too-long
stress_queue = self.run_stress_cassandra_thread(
stress_cmd=cmd,
stress_num=1,
compaction_strategy=compaction_strategy,
stats_aggregate_cmds=False,
round_robin=True
)
self.get_stress_results(stress_queue, store_results=False)