forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworkflow_config_tra_Alpha360.yaml
130 lines (122 loc) · 2.96 KB
/
workflow_config_tra_Alpha360.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market csi300
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
num_states: &num_states 3
memory_mode: &memory_mode sample
tra_config: &tra_config
num_states: *num_states
rnn_arch: LSTM
hidden_size: 32
num_layers: 1
dropout: 0.0
tau: 1.0
src_info: LR_TPE
model_config: &model_config
input_size: 6
hidden_size: 64
num_layers: 2
rnn_arch: LSTM
use_attn: True
dropout: 0.0
port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy
kwargs:
signal:
- <MODEL>
- <DATASET>
topk: 50
n_drop: 5
backtest:
start_time: 2017-01-01
end_time: 2020-08-01
account: 100000000
benchmark: *benchmark
exchange_kwargs:
limit_threshold: 0.095
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: TRAModel
module_path: qlib.contrib.model.pytorch_tra
kwargs:
tra_config: *tra_config
model_config: *model_config
model_type: RNN
lr: 1e-3
n_epochs: 100
max_steps_per_epoch:
early_stop: 20
logdir: output/Alpha360
seed: 0
lamb: 1.0
rho: 0.99
alpha: 0.5
transport_method: router
memory_mode: *memory_mode
eval_train: False
eval_test: True
pretrain: True
init_state:
freeze_model: False
freeze_predictors: False
dataset:
class: MTSDatasetH
module_path: qlib.contrib.data.dataset
kwargs:
handler:
class: Alpha360
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
seq_len: 60
horizon: 2
input_size: 6
num_states: *num_states
batch_size: 1024
n_samples:
memory_mode: *memory_mode
drop_last: True
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs:
model: <MODEL>
dataset: <DATASET>
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config