forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrolling_benchmark.py
114 lines (96 loc) · 4.2 KB
/
rolling_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from qlib.model.ens.ensemble import RollingEnsemble
from qlib.utils import init_instance_by_config
import fire
import yaml
from qlib import auto_init
from pathlib import Path
from tqdm.auto import tqdm
from qlib.model.trainer import TrainerR
from qlib.workflow import R
from qlib.tests.data import GetData
DIRNAME = Path(__file__).absolute().resolve().parent
from qlib.workflow.task.gen import task_generator, RollingGen
from qlib.workflow.task.collect import RecorderCollector
from qlib.workflow.record_temp import PortAnaRecord, SigAnaRecord
class RollingBenchmark:
"""
**NOTE**
before running the example, please clean your previous results with following command
- `rm -r mlruns`
"""
def __init__(self, rolling_exp="rolling_models", model_type="linear") -> None:
self.step = 20
self.horizon = 20
self.rolling_exp = rolling_exp
self.model_type = model_type
def basic_task(self):
"""For fast training rolling"""
if self.model_type == "gbdt":
conf_path = DIRNAME.parent.parent / "benchmarks" / "LightGBM" / "workflow_config_lightgbm_Alpha158.yaml"
# dump the processed data on to disk for later loading to speed up the processing
h_path = DIRNAME / "lightgbm_alpha158_handler_horizon{}.pkl".format(self.horizon)
elif self.model_type == "linear":
conf_path = DIRNAME.parent.parent / "benchmarks" / "Linear" / "workflow_config_linear_Alpha158.yaml"
h_path = DIRNAME / "linear_alpha158_handler_horizon{}.pkl".format(self.horizon)
else:
raise AssertionError("Model type is not supported!")
with conf_path.open("r") as f:
conf = yaml.safe_load(f)
# modify dataset horizon
conf["task"]["dataset"]["kwargs"]["handler"]["kwargs"]["label"] = [
"Ref($close, -{}) / Ref($close, -1) - 1".format(self.horizon + 1)
]
task = conf["task"]
if not h_path.exists():
h_conf = task["dataset"]["kwargs"]["handler"]
h = init_instance_by_config(h_conf)
h.to_pickle(h_path, dump_all=True)
task["dataset"]["kwargs"]["handler"] = f"file://{h_path}"
task["record"] = ["qlib.workflow.record_temp.SignalRecord"]
return task
def create_rolling_tasks(self):
task = self.basic_task()
task_l = task_generator(
task, RollingGen(step=self.step, trunc_days=self.horizon + 1)
) # the last two days should be truncated to avoid information leakage
return task_l
def train_rolling_tasks(self, task_l=None):
if task_l is None:
task_l = self.create_rolling_tasks()
trainer = TrainerR(experiment_name=self.rolling_exp)
trainer(task_l)
COMB_EXP = "rolling"
def ens_rolling(self):
rc = RecorderCollector(
experiment=self.rolling_exp,
artifacts_key=["pred", "label"],
process_list=[RollingEnsemble()],
# rec_key_func=lambda rec: (self.COMB_EXP, rec.info["id"]),
artifacts_path={"pred": "pred.pkl", "label": "label.pkl"},
)
res = rc()
with R.start(experiment_name=self.COMB_EXP):
R.log_params(exp_name=self.rolling_exp)
R.save_objects(**{"pred.pkl": res["pred"], "label.pkl": res["label"]})
def update_rolling_rec(self):
"""
Evaluate the combined rolling results
"""
for rid, rec in R.list_recorders(experiment_name=self.COMB_EXP).items():
for rt_cls in SigAnaRecord, PortAnaRecord:
rt = rt_cls(recorder=rec, skip_existing=True)
rt.generate()
print(f"Your evaluation results can be found in the experiment named `{self.COMB_EXP}`.")
def run_all(self):
# the results will be save in mlruns.
# 1) each rolling task is saved in rolling_models
self.train_rolling_tasks()
# 2) combined rolling tasks and evaluation results are saved in rolling
self.ens_rolling()
self.update_rolling_rec()
if __name__ == "__main__":
GetData().qlib_data(exists_skip=True)
auto_init()
fire.Fire(RollingBenchmark)